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Cross-magnetic-field transport due to like-particle collisions is discussed for the parameter regime
Ap >> rL, where \p is the Debye length and ry is the characteristic Larmor radius of the colliding
particles. A new theory based on collisionally produced E x B drifts predicts a particle flux which
exceeds the flux predicted previously, by the factor (Ap/rp)? >> 1.

PACS numbers: 52.25.Fi

This paper presents a new theory of cross-magnetic-
field transport due to like-particle collisions. The new
theory invokes a transport mechanism which is quite
different from that considered in the traditional theory
of like-particle transport.""* The ratio of the particle
flux predicted by the new theory to that predicted by
the traditional theory is (Ap/rp )%, where Ap is the
Debye length and rp is the characteristic Larmor
results of the colliding particles; so the new theory su-
persedes the traditional theory in the parameter regime
)\D >>rL.

This is the typical operating regime for experiments
with magnetically confined pure electron plasmas,* ¢
and there is a current effort to measure electron-
electron transport in such a plasma.” The theory
presented here is motivated by these experiments, and
the analysis is carried out with a pure electron plasma
in mind.

To understand the transport mechanism invoked by
the new theory, consider two electrons which interact
while moving along field lines which are separated by a
distance p, where Ap = p >> r;. One may think of p
as a kind of impact parameter. The first inequality im-
plies that the interaction is not shielded out, and the
second implies that the effect of the interaction on the
electron motion may be described by guiding-center
drift theory. The guiding center for each electron ex-
periences an Ex B drift, and the time integral of the
drift velocity over the duration of the interaction yields
a step in the guiding-center position. Such steps are
the elementary steps of the transport process. The
process is similar to the two-dimensional transport of
charged rods,® except that here the motion of the elec-
trons along the magnetic field lines plays an important
role in the dynamics.

Previous discussions of transport due to like-particle
collisions, as opposed to like-rod collisions, invoke a
quite different mechanism."* In these discussions, a
step in the position of an electron guiding center arises
as a result of the collisional scattering of the electron
velocity vector. The discussions are based on solu-
tions of the Boltzmann equation (or Lenard-Balescu
equation) for a magnetized plasma, and the effect of
velocity scattering is included through the collision
operator (but the effect of collisionally produced ExB

drifts is not included). For the parameter regime
rp << Ap, velocity scattering is associated primarily
with small-impact-parameter collisions (i.e., p <ry),
and, in the collision operator, the integral over impact
parameters is cut off at p — rL.4 Thus, the traditional
theory of like-particle transport focuses attention on
small-impact-parameter collisions, whereas the new
theory focuses attention on large—impact-parameter
collisions (i.e., p ~ Ap >> ry).

It is easy to understand why large—impact-parameter
collisions are more effective than small-impact-
parameter collisions in producing like-particle trans-
port. From conservation of momentum, one can see
that the guiding centers for two like particles which are
involved in a collision make equal and opposite steps.
This is true whether the steps are due to velocity
scattering or to E x B drifts. If the two guiding centers
are at nearly the same position, the equal and opposite
steps contribute nearly canceling contributions to the
particle flux. On the other hand, for well separated
guiding centers, the equal and opposite steps each con-
tribute locally to the flux. We will see that the net flux
is proportional to the square of the separation between
the guiding centers. For steps due to velocity scatter-
ing, the guiding centers can be separated by no more
than r, whereas for steps due to E X B drifts, the guid-
ing centers can be separated by as much as Ap. This is
the reason that the ratio of the flux predicted by the
new theory to that predicted by the traditional theory
is (A\p/rp)?>> 1.

As was mentioned, the effect of collisionally pro-
duced EXxB drifts is not included in the Boltzmann
equation. To include this effect, one must start fur-
ther back in the analysis, that is, with the Bogoliubov-
Born-Green-Kirkwood-Yvon hierarchy,” ' and that is
the approach which we follow.

For simplicity, we consider a slab geometry, charac-
terized by the uniform magnetic field ZB, the mean
self-consistent electric field XE (x), and the mean den-
sity n (x). The plasma is assumed to be homogeneous
in the y and z directions. The density gradient and the
electric field together with the electron-electron in-
teractions result in an electron flux I', (x), which we
will calculate.

Since the main contribution to the flux comes from
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collisions for which guiding-center drift theory is well the ordering Ap >> r, the polarization drift which oc-
satisfied (i.e., p ~ Ap >> ry), we use a guiding-center curs during an interaction is negligible compared to the
model to describe the plasma. The state of an electron associated E x B drift.
is specified by (r, v), where r= (x,y,z) is the guiding- From the one-electron equation of the Bogoliubov-
center position and v is the velocity along a field line. Born-Green-Kirkwood-Yvon hierarchy for the guid-
The electrons stream and accelerate along the field ing-center model (or simply from inspection), one can
lines and undergo E x B drift across them. Because of see that the electron flux in the x direction is given by
I the expression
T ()= = N/ [ dvy [ dv, [ dry(e/B)ow(r, 1)/8y, £2(x1, w1, 10, v2,0), o))

where ¢ (ry, 1) is the interaction potential between electrons 1 and 2, f,(ry, v}, T, vp,t) is the two-electron distri-
bution function, N is the total number of electrons, and V is the total volume. The two-electron function is nor-
malized in the usual manner (i.e., V2= [d°r| [ dv, [ d*ry [ dv,f>).

For simplicity, we treat the shielding in an ad hoc manner, and write (r, r;) as the Debye-shielded Coulomb
interaction

Y(r, ) =—(e/lry—r,Dexpl— [r; —1,1/Ap ], 2)

where 1/ y=4me?n [+ (x; +x,)1/T. The two-electron function then evolves according to the equation

9 9 . c 9
ot +(v2 vl)_‘—azz + B[E(X1)+E(X2)]—ay2
e 9y | 8 9 | coOypl d 8 c|O8y 9y | 0 |, _
om0z, v, 0wy | T B oy, | 0% 6x2]+B[6x2 ax, |y, 27 3)

where use has been made of the assumed homogeneity in y and z.

Of course, an ad hoc treatment of shielding is not rigorously correct. A proper treatment is complicated
mathematically by the fact that the shielding takes place in an inhomogeneous plasma. The purpose of this Letter
is not to calculate the precise value of the flux, but rather to illustrate simply that a new transport mechanism
yields a flux which is much larger than that obtained previously.

Equation (3) can be solved by use of a perturbation expansion in the interaction strength . To this end, we set
Fa= 30 + 5V and L =L@ + LV, where L is the operator which acts on f,. The superscript (0) refers to quan-
tities which are zero order in ¢ and the superscript (1) to quantities which are first order in . Thus, L (O consists
of the first three terms in the bracket of Eq. (3) and LV of the last three terms.

In zero order, Eq. (3) reduces to the form L@ f{? =0, which has the solution f{? = £{? (x|, v;,x5 v,). The
solution is further constrained by the observation that in zero order there can be no electron-electron correlations;
the two-electron distribution must be related to the one-electron distribution through the equation
F19.(1,2) = £{9 (1) f{® (2). Taking the one-electron distribution to be a Maxwellian characterized by density
n (x) and temperature 7 yields the solution

|

Of course, the zero-order Ex B flow in the y direction does not appear explicitly in the distribution as a velocity
dependence, since the distribution refers to guiding centers. Only a flow in the z direction would appear as a veloc-
ity dependence.

It is interesting to note that the Maxwellian character of the one-electron distribution is forced by collisions
which are not directly included in the guiding-center model. This model focuses attention on the large—impact-
parameter collisions (i.e., p ~ Ap >> r), which yield the dominant contribution to the flux. The scattering of
electron velocity vectors, which is described by the collision operator, is due primarily to collisions characterized by
small impact parameter (i.e., p < rp). These collisions are not directly included in the guiding-center model but do
have the indirect influence of forcing the one-electron distribution to be Maxwellian.

In first order, Eq. (3) reduces to L‘O £V + LM £{0 — 0 which when written out takes the form
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dt B ay2 n(xz) E— }’I(Xl) 7dx_1 f2 ’ (5)
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where d/dt = L(© is the total time derivative along the unperturbed orbit. By use of the relation

ay _ 8y ¢ _ By
dt (v2 v1) 622 B [E(Xz) E(X})] Byz' (6)
the solution to Eq. (5) can be written as
(1) _eY 0 I dn 1 dnj|, _ o (" gocldy |
f2 Tf2 +[[n(x2) dx2 n(x ) dx1 [E(X2) E(xl)]}f f—ocdt B ay2 s (7)

where the time integral is along the unperturbed orbit.
By combination of Egs. (1), (4), and (7), the flux can be written as

F"("‘)=fd3’2[ n(iz) %2‘ n(io deil +%[E(x2)‘E(X1”}"(xl)"(Xz)h(rz—rp (x,+x,)/2), (8
where
h(n=1y, (x5 +x)/2) = [ dv, [ dv, expl = 77 (g mui+3mvd)] f arl< (ETR[ETR) ©)
' 2w T/m) e 8y, || 9y

Because of Debye shielding, the r, integral in Eq. (8) receives significant contributions only for x, near x; (i.e.,
for |x,—x1] < Ap). We assume that n (x,) and E (x,) vary on a length scale which is large compared to Ap, and
we make Taylor expansions of n (x,) and E (x,) about x,=x;. The variation of 4 (r,—ry, (x;+x,)/2) through its
second argument is on the same scale as that for n (x,) and E (x,); so h (r,—ry, (x; +x,)/2) also can be Taylor
expanded about x,=x;. Of course, the dependence of h(r,—ry, (x;+x,)/2) on its first argument cannot be
Taylor expanded,; it is the peaked nature of this dependence which justifies the other expansions. Carrying out the
expansions and substituting into Eq. (8) yields the result

T, Ge) = -2 n2(e K () -4 | —L— 21

e 2 | 7w e dx1+ CEG)|, (10)

where K (x;)=[d*r (x?/2)h(r,x,) is the transport
coefficient and r=r, —r; is the relative position vector.
This expression for the flux differs from that obtained

I

one can show that

2 2
previously only in the value of the transport coeffi- K (x,) = me’c Xz(xl f dv exp(—mv /;‘;2T)
cient K (x), which we now proceed to evaluate. 6B [vl 4nT/m)

The unperturbed orbit for the relative position vec- (12)

tor is specified by
Here, the integral over the relative velocity arises in

z=z+v(t'—1), the following way. The integral [ dv, [ dv, is replaced
y =y + (/BLE (xy) — E (e ) (1 — 1), by the integral fdvIdV, where V = (.vl +v,)/2 is the
center-of-mass velocity, and then the integral over the

and x’'=x. Here, the relative velocity v=v,— v; and center-of-mass velocity is carried out.
x and x, are independent of ¢’. By use of the relation The integral over the relative velocity is logarithmi-
cally divergent at v=0. Physically, this corresponds to
|E(x2) = E (e | < |dE/dxo|np = dmen hp, the fact that two electrons with small relative velocity
one can see that the inequality Ap >> r. implies the  interact for a long time and experience large ExXB
inequality v >> (¢/B)|E(x,) — E(x,) |. In other steps due to the interaction. To remove the diver-
words, for most collisions, the relative velocity parallel ~ gence we must take into account physical effects which
to the field is much larger than the relative velocity  limit the time of the interaction, or, equivalently, cut
across the field. As a first approximation, we neglect off the velocity integral at some small but finite value

the relative cross-field motion which occurs during an of |v| (i.e., min|v|=Av).
interaction and set y’' = y. One such effect is small-angle scattering. The
By use of the orbit z'=z4+v(t'—1¢), y'=y, and small-impact-parameter collisions, which are not
x'=x together with a Fourier representation of the in- directly included in the guiding-center model, produce
teraction potential a diffusive spreading of v=wv,—v;. During the time
Pk (—dme) 7, the amount of spreading is —(zAU)2= vv’r, where v is
Y= 33 > exp(ik-1), an the collision frequency and v*= T/m. This velocity
(2m)° k2 +1/Np(x1) spread can separate electrons 1 and 2 by a Debye
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length during the time 7 provided that (Av)7= \p.
Eliminating = between the two relations yields the
result (Av/v) = (v/w,)"3, where w, is the plasma fre-
quency.

A competing effect is associated with the relative
cross-field motion of the two electrons. Two electrons
for which |x;—x,| = Ap have a relative y velocity of
(¢/B)|dE/dx|\p= (c\pdmen)/B. The time 7 for this
relative velocity to produce a separation |y; —y,| = A\p
is given by 7(4menc)/B =1. Relating this time to a
relative parallel velocity through (Av)r = Ap yields the
result (Av/v)=r_/Ap. Of course, the cutoff for the
velocity integral in Eq. (12) is determined by the effect
which yields the largest value of (Av/v).

Introducing the cutoff and carrying out the velocity
integral yields the result

\/_ezc2)\D(x1)

K==

2l w
This coefficient should be compared to the coefficient
obtained previously, that is, to (3)(v/n)r{, where
v=(16vVme*n/15m*v*) In(r./b) is the collision fre-
quency and b =e?/m7v? is the distance of closest ap-
proach. The ratio of the new coefficient to the previ-
ous coefficient is given by

(35) n(®/Av)/In(ry /b)Y (Np /)2

In the parameter regime Ap >> ry, the new coefficient
is much larger than the previous coefficient, and the
new coefficient scales with magnetic field strength as
1/B? rather than 1/B* Such dramatic differences
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should be observable experimentally.
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