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Rapidly Convergent Lower Bounds for the Schrodinger-Equation Ground-State Energy
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%e present a new and fundamental approach for generating rapidly convergent lower and upper
bounds to the ground-state energy of a bosonic system, E~. The bosonic ground-state wave func-
tion defines a moments problem because it both is nonnegative and exhibits rapid asymptotic de-
crease. Through the use of the Hankel-Hadamard determinant inequalities associated with this mo-
ments problem one can constrain Eg through exponentially convergent bounds. Extensions to ex-
cited bosonic states and fermionic systems are briefly outlined.

PACS numbers: 31.15.+q, 02.30.+g, 03.65.Ge

The development of effective methods for generat-
ing rapidly convergent lo~er and upper bounds to the
quantum ground-state energy, Eg, has been an impor-
tant problem for many decades. ' Until now, this prob-
lem had remained unsolved. Although there are many
other techniques for calculating eigenvalues, none of
these can give systematically convergent bounds;
therefore, most eigenvalue estimates are inaccurate.
This is an important concern for the two-dimensional
Zeernan problem with superstrong magnetic fields.
The multidimensional generalization of our approach
will be applied to this important problem in future
works. Nonetheless, the superstrong-magnetic-field
case for the spherically symmetric Zeeman problem is
readily solved here. The laser physics problem of Lai
and Lin affords an example of the shortcomings of
some eigenvalue calculation schemes. Their combined
Pade, Hellman-Feynman hypervirial analysis leads to
Eg = 1.017 281 60 (X = 0.1, g = 2); however, a more
accurate answer is provided by our method,
1.017 176 (E ( 1.017 185.

We present our approach in the context of one-
dimensional quantum systems with rational-fraction
potential functions. Many important problems in char-
monium physics and atomic physics are of this type, in-
cluding the spherically symmetric Zeeman problem.
In addition, many polynomial-potential problems, such
as the quartic and sextic potentials, have played a
fundamental theoretical role in our understanding of
strongly coupled quantum systems. These two cases
are solved here through our approach. As has been ar-
gued by Handy, moments are relevant to strong-
coupling physics. As such, because the moments prob-
lem'~' plays a key role in our method, it is not too
surprising that our technique is so effective for many
strong-coupling quantum problems.

We will focus on bosonic ground states because the
associated wave function is nonnegative' in a co-
ordinate-basis representation. However, our method
is extendable to any system (i.e., excited bosonic

OO
n,.= Jt Jt Ll x; "Ir(x)dx~ . . dxd.

i =1

The asymptotic properties of the ground-state bosonic
wave function, Wg, insure that the corresponding
Hamburger moments exist. ' ' In addition, the non-
negativeness'3 of Pg permits us to normalize things
according to It, (0) = 1. The combination of these two
facts (existence of moments, nonegativity of 4's) de-
fine a moments problem through which eigenvalue
quantization, through convergent bounds, is possible.
We demonstrate this through the class of one-
dimensional rational-fraction —potential problems.

We denote by V(x) = %(x)/D (x) the rational-
fraction potential function involving X(x) =gk on„
xx" and D(x) = gkt od„x". The associated normal-
ized Schrodinger equation is —D (x)W" + [%(x)
—EgD (x) ]W = 0. Through the necessary "integration
by parts" analysis, a recursive relation for the Ham-
burger moments fo11ows:

k=0
dk m +k m +k —1 pm+k —2

r

+ nkPm +k —Eg dkP, +. k = 0.
k=0 'k=o

states, fermionic states) once the signature properties
of the associated wave function are known. For exam-
ple, because the n th excited bosonic state must have n
nodes, '4 we may represent it in the form V„=P„(x)
x F (x), where F (x) is nonnegative, and P„ is an n
degree polynomial. The coefficients of P„and E„, the
eigenvalue, can then be determined through our
method. Some examples of this are given in a related
work by Handy and Msezane. '5

Consider a d-dimensional bosonic quantum system
with wave function V(x). The Hamburger moments
are defined as
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The Schrodinger equation admits physical and unphys-
ical (unbounded) solutions. Only the former are im-
plicitly assumed in Eq. (2); otherwise infinite asymp-
totic "boundary" terms would be present. If we set
m = 0 in Eq. (2), the highest-order moment p,„
r = max[p, q}, is seen to depend on all the lower-order
moments p, , ~, . . . , p, ~ and on Eg. Once these are
specified, all the higher-order moments are deter-
mined. We call this the "missing moment problem. "

For parity-invariant systems + (x) is symmetric;
thus, only even-order Hamburger moments are
nonzero. These are equivalent to the Stieltjes mo-
ments of a different function measure. Specifically,
through a simple change of variables one has p~ = p, 2~,
where p~ = f y~[W(vy )/Jy ]dy. The Stieltjes mo-
rnent problem tells us' ' that the Hankel-Hadamard
determinant inequalities express the necessary and
sufficient conditions for a sequence of numbers to be
the moments of a nonnegative function. The Hankel-
Hadamard determinants are defined as follows:

TABLE I. Deviations from exact ground-state energy
Eg'=

2 for V(x) = 4x . m is the maximum order of mo-
ments used.

g( —) p+ g( —) g(+) g(+)
m m g

10
11
12
13
14

5x10 '
1x10 '
1x10 '
1x10 4

1x10 4

1x10
1x10 '
1x10 4

1x10
1x10

case, Table I contains the positive deviations 5~ —~ rel-
ative to Eg'= —,'. It will be noted that as the number of
moments is increased by one, only one of the bounds
is improved; furthermore, this pattern alternates
between the lower and upper bounds. Because of this,
it is convenient to define the "deviation parameters"
in accordance with

Pm

A(m, n) =det
I m+1 Pm+n

(3)
5~-+~=c ~10 -+, m =even. (4)

Pe+n Pm+n+r - ~ ~ Pm+2n

The specific inequalities of concern to us are
5(0,n) & 0 and 6 (1,n) ) 0, for n ~ 0. Given the first
iM+ I p, moments, it is apparent from Eq. (3) that all
of the determinants 6(0,n), for 0~2n ~M, and
b (l,n), for 0~ 2n ~ M —1, are calculable. We shall
study how successive increases in M lead to improved
bounds for the true ground-state energy and any miss-
ing moments. An examination of the data shows that
as more and more determinant inequalities are used,
stronger constraints, more restrictions, are being im-
posed on Eg, etc. These constraints come from the re-
quirement that all of the relevant determinant inequal-
ities be satisfied simultaneously.

For the harmonic-oscillator problem, —II" + 4x W
= Eg 0, the Stieltjes moment recursion relation is

@~+!= 4[E~p~ + 2p (2p —1)p~ !1. It follows that
p, !=4', p, 2

——(4Eg) +8, p, 3= (4Eg j'+56(4'), and
p,4= (4E~) +176(4Eg) +960. The first nontrivial
Hankel-Hadamard determinant inequality is 5 (1,0)
& 0, or Eg & 0. It also follows that 4(1, 1)= 40
x (4Eg) —64 and A(0, 2) = —1024[(4Eg) —7]. The
&(1, I) & 0 and &(0, 2) ) 0 !nequalities yield the
bounds 0.3162 ( Eg & 0.6615 for the ground state.
The higher-order determinants are polynomials in Eg
and can be numerically determined. All higher-order
determinant numerical analysis can be restricted to the
above interval for Eg.

Given the first m+1 moments p, p, . . . , p, we let
E —~ denote the upper and lower bounds on the true
ground-state energy Eg'. For the harmonic-oscillator

The data in Table I correspond to c + = 1 and
u+ ——- 0.3, thereby manifesting an exponential conver-
gence.

The sext!c-potenual problem V= mx +gx (g & 0)
has a symmetric ground state. A Stieltjes formulation
follows, resulting in the recursive moment relation

p,p+3=g [Egp,p inp, p+!+2p(2p 1)p,p !],
where E~, p. ~, and p, 2 are undetermined. This two-
missing-moment problem can be reduced to a zero-
missing-moment problem through the transformation
e W = 4, where S = ——,

' g' x .
A simple analysis of the sextic problem gives us the

asymptotic form of the general solution, 0' (x)= exp(+ —,'g' x ). Unphysical solutions correspond
to + 4 . If a Hankel-Hadamard approach is to yield
useful lower energy bounds then the transformation

4 must insure that the 4-space recursive rno-
ment equations do not admit unphysical solutions.
This means that W„„~h„,;«, must have infinite 4 mo-
ments, p~= fx~Cidx. Also note that the uniqueness
of the nonnegativity of the ground state is preserved
under 'P

The ensuing Stieitjes moments for 4 satisfy
p~+, ——U (p)/0 (p), where 0 (p) = g'i (4p + 3) + m,
U(p) =Egp~+2p(2p —1)p~ t. As long as g & 0 a
ground state must exist, and its moments must be fi-
nite and nonzero. The II (i) denominator can vanish
if m = —g'i (4i +3), for integer i It must then .fol-
low that U(i).=0. For i =0, 1 this type of arialysis
leads to Eg = 0 and Eg = —242g'i4, respectively.

The lower-order determinants yield the bounds
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TABLE II. Deviations from exact ground-state energy
E~ = 1.435 6247 for V(x) =x +x .

TABLE III. Deviations from the ground-state energy
y'= 1, E'= 0.59377, for the Bohr and Zeeman atomic po-
tentials, respectively (Z = 1, )(= 1).

g( —) p+ p( —) g(+) p (+)
m m g

5( —) + ( —) g(+) (+) ~
(g$

—)) (h)+))
10
11
12
13
14

0.62 x 10
0.12 x 10
0.12 x 10
0.47 x 10
0.47 x 10

0.18 x 10
0.18 x 10
0.15x10 4

0.15 x 10
0.13 x 10

10
11
12
13

2x10
3x10
3x10 '

3.3x10 4

4x 10
4x 10

6.4 x 10
6.4x 10

4x 10
2x 10
2x 10
1x10 '

6x 10
6x10 '
6x 10
6x10

[1(3g1/2+m)21/2g 1/4]

0&E, &l, for m ) —3g'~', (5)

I. &E &0, for —7g'~'& m & —3g'/',

Et&I, for I & —7g'

(6)

Equation (5) follows from 4(0, 1) ) 0 and p, , ) 0.
Examination of 4(1, 1) ) 0 leads to —2g'/2Eg4+/3E2

2D1 D3 & 0, where p= D1D2 + 6D2 —2D)D3 and
D; =g' (4/ —1) + m. For the case m =g = 1 one ob-
tains thereby the bounds 1.0997 ( Eg ( 2.8285. All
higher-order determinant nUmerical analysis can be re-
stricted to this interval. The data in Table II confirm
an exponential rate of convergence to the value

Eg =1.43S 6247 of Hioe, MacMillen, and Montroll, '8

where c+ = 1 and o. + = 0.4.
The Bohr atom, r4" + (y —,' r)(I) = 0 [(I)(0—)=0], '9

corresponds to a rational-fraction potential problem
which is purely Stieltjes, whose moments satisfy
p, +1 ——4[yp, + m (m + 1)p, , ]. The lower-order
determinant inequalities yield the bounds 0.S0 & y
& 1.S9. The true value is y = 1. Table III supports an

exponential rate of convergence; c = 3, c+ = 6, and
o. + = 0.3.

The spherically symmetric Zeeman problem, 6

——,
' V'2W —(Z/r )W+ )tr W =EN, becomes a zero-

missing-moment problem upon working with the mo-
ments of F (r) = re ' +, where n = ())./2)'/ . The as-
sociated recursion relation is

p, +, = [Zp, + —,'m(m+1)p, 1]/D,

D =n(2m+3) —E
From the requirement that the moments be positive, it
follows that Eg & 3o.. The lower-order determinant
inequalities bound Eg to E ( Eg & 3n —Z (2n)'/2,
where E corresponds to the most-positive-root solution
of the cubic polynomial (x = 3n —E)

Z =1, we get 0.5937711( E~ ( 0.5937717 on the
basis of using the first fifteen moments. For ~=1,
Z =3, —4.1978716( E~ ( —4.197 8712, with use of
nineteen moments. For ~=0.1, Z = 1, —0.2960880( E~ ( —0.2960870, with use of fifteen moments.
In all cases there was monotonic convergence. Table
III has the pertinent data for the superstrong-field
case; c+ = 6, c ——1, o. + = 0.S, o. = 0.4.

The quartic anharmonic oscillator, —'If" + (mx
+X4)W = Eg'(Ir, leads to a one-missing-moment prob-
lem for its Stieltjes moments,

pal+2
= [~gpp

—m pp+ 1+2/ (2/ —I )p, 1].

The determinant inequalities simultaneously constrain
Eg and p, t. In particular, b, (0, 1) ) 0 yields the bound
Eg ) p. t(m + p, t); thereby duplicating the well-known
theorem Eg ) Infinum {V) . The inequality 6 (1, 1)) 0 leads to E —E p, t (m + p, t ) —2p, t ( 0. Colllbln-
ing these two b, inequalities results in e, & E~ ( —,

' [e,
+ (et + 8p 1)' ], where et = p 1(m + p 1). The nu-
merical behavior of the higher-order determinant in-
equalities further constrains Eg to a value consistent
with that quoted in Ref. 3, Eg'= 1.0603621. The data
in Table IV show the exponential convergence result-
ing from the use of the first fifteen moments:
c+~ ~ = 1, o, + " = 0.3. The superscripts refer to the
energy and moment entries. Our actual numerical
analysis involved the first 22 moments, leading to con-
tinued exponential convergence to the values
1.060 362 OS & E & 1.060 362 10 and 0.63S 924 42

TABLE IV. Deviations for Eg and p~ from the ground-
state values E~ = 1.060 362 09 and p, [ = 0.635 924 43 for
V(x) =x'.

—x + (2Z —4n)x + 6nZ x

+ [12(nZ)' —2nZ4] & 0.

For the superstrong-magnetic-field case, X = 1 and

10
11
12
13
14

0.14 x 10
0.14x 10
0.14x 10
0.14 x 10
0.22 x 10

0.16 x 10
0.54x10 '
0.52 x 10
0.18 x 10
0.18 x 10

0.19x 10
0.22 x 10
0.12 x 10
0.12 x 10
0.14 x 10

0.11 x 10
0.28 x 10
0.24 x 10
0.36 x 10
0.30x10 4
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& p, t ( 0.63592444.
Clearly, the scope of our approach is quite exten-

sive. Its extension to the multidimensional realm will
be the subject of future works.
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