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Quantum Holonomy and the Chiral Gauge Anomaly
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The chiral gauge anomaly is studied by use of the U(1) holonomy on the space of all gauge fields.
On this space an Abelian gauge structure is identified and the anomaly is related to the pertinent
field-strength tensor and computed by use of the g invariant of a five-dimensional Dirac operator.
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The analysis of chiral anomalies has led to impres-
sive progress in our understanding of the nonperturba-
tive aspects of quantum theories. ' Anomaly cancella-
tion is an important constraint on model building2 and
has played a central role in the identification of certain
ten-dimensional string theories as strong candidates
for ultimate unification. Recent advances are 1argely
based on the analysis of a particular solution4 to the
Wess-Zumino consistency condition5 by use of group
theory, cohomology, 6 and family index theorems.
However, aside from diagrammmatic computations8
there has been little progress in the understanding of
the origin of the chiral anomaly in terms of the quan-
tum structure of the underlying field theory: It would
be desirable to find an interpretation using such simple
quantum mechanical concepts as the connection
between the axial U(1) anomaly, spectral flow, and
particle production.

In this Letter we shall examine the quantum
mechanical adiabatic approximation as a powerful non-
perturbative technique for analyzing quantum field
theories. As an example we consider the chiral gauge
anomaly and present a first-principles computation of
the effective action for the anomaly. We identify the
Fock vacuum expectation value of the non-Abelian
electric field operator as an induced U(1) connection
in the infinite-dimensional space of all gauge fields and
analyze the U(l) gauge structure in this space. to We
find that the effective action for the anomaly is a sur-
face integral of the pertinent U(l) field-strength ten-
sor. We then proceed with the semiclassical quantiza-
tion of the gauge fields as an infinite-dimensional
quantum mechanical system of a point particle in an
external "magnetic" gauge field, and show that the
commutator algebra of the electric field operator forms
a nonassociative Malcev algebra. " More details and
extensions of our approach will be reported elsewhere.

Consider a single, minimally coupled Weyl fermion
in a complex representation of some non-Abelian gauge
group. We fix 3 0 = 0 and consider the infinite-
dimensional manifold ~ of all static gauge field
configurations A (x). On M3 a time-dependent gauge
field A (x, t) corresponds to a path and a periodic
gauge field to a closed loop. In a nonanomalous
theory we know how Gauss's law can be used to elim-
inate the residual static gauge freedom. However,
since we consider an anomalous theory we do not at-

tempt to projects into W3/9, the space of three-
dimensional gauge fields modulo three-dimensional
gauge transformations. For present purposes it is
enough to consider ~ . On the periodic family of
gauge fields A (x, t ) (0 ~ t ( T) we consider the
T ~ limit of

T

J~ D P D t}t exp i Jt dt tli" [i 8, +H (t) ] t'ai

Here X„are the eigenvalues of the Dirac operator

Itb, +H(t)}y(x, t) = Zy(x, t) (2)
subject to tti(T) = —)}i(0) and H(t) is the Dirac Ham-
iltonian. It depends on t through the background
gauge fields and H (T) = H(0). The zero modes of
(2), f„(x,t ) with f, (x, T) = exp ( —i n„}f'(x, 0), are
characterized by the Floquet indices a„' and all
eigenmodes of (2) are obtained from

q„„(xt) =e ' "" ' "f (x t) (3)
with to„= (2n +1)7r/T. Substituting (3) into (2) we
get ~„,= eo„—o., and a direct computation' yields for
(1)

exp( —,
' i X„ In, I) II, (1+e

' "). (4)
For large T and with the appropriate Feynman bound-
ary condition, we identify the first factor as the vacu-
um persistence amplitude. We compute (4) in the
limit T ~ using adiabatic approximation, and for
simplicity we assume that for all t the eigenstates of
H(t), H(t)(xIr;t) =E, (t)(xIr;t), are nondegenerate
and also that as a function of t the eigenvalues E„(t)
do not cross zero, i.e. , that there is no spectral flow.
Instead of A (x) we find it convenient to use the no-
tation 3 where x stands for a, i, x, and all repeated in-
dices are summed. With this notation the zero modes
of (2) are given in the adiabatic approximation by

f (x i) =xxp i f dxE( )+iX, (xi) ix[r;t), (5)
dy„(t) =i Jt dr(r;rI Ir;7. &

d= i Jt dr A„(~) (r;r I

For an open path on M we can choose y, (t) =0.
However, as pointed out by Berry, ' for a closed loop
BC on W3 this is not always possible: A nontrivial
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y„(T) implies nontrivial U(1) holonomy on A .' From (5) we then determine the Floquet index as

u, = —f d 7. E„(r) —y, (BC). Using the boundary condition that for time-independent background fields
o,, = —E, T, '2 we conclude that y, (BC) is 0 (1) while the integral over the energy is 0 (T). In the limit T
(4) then reduces to

1 T..p —,', X, )t d, )E,(,))+-,' g, sgn(E, )y„(ac) . (6)

(t) dA„~„= (9)

where& = dM is the field-strength two-form. If we integrate~ over a topological two-sphere S in ~ the sUrface

independence of (9) yields' = 2m. n. If n vanishes for every two-surface on&3 the field strength~ is exact, i.e. ,

we can find a global' such that ~ = clad on M . The loop integral (9) then reduces to an integral of the original

gauge field A; (x, t ) over the physical four-space and its divergences can be canceled by four-dimensional counter-
terms. A chiral gauge anomaly can thus arise only if M is not exact This m. eans that the relation M = dM can be
valid at most locally on& . But if we could find a region in~ such that~ =d& for some', then for every loop
in this region the integral (9) could be represented by a four-dimensional integral over the physical space. Since
the anomaly functional must be "analytic" in A,'(x) the anomaly could then be canceled by a counterterm ob-

tained by analytic continuation in ~ . Hence a chira1 gauge anomaly can only arise if the Bianchi identity for ~
fails, i.e., d&~0 almost everywhere, which is possible only if ~ has a source with dense support on& .' We
shall now compute&: We first show that (modulo gauge-invariant terms) ~ is related to the q invariant (i.e. , to
the number of positive eigenvalues minus the number of negative eigenvalues) of the five-dimensional Euclidean
Dirac operator

D = il'a, +tI'8, + iI'[8, +A, (s)] = ii'8, +0, {10)
defined in the cylinder [ —~, ~] && S . Here I 4 are the d = 5 Euclidean Dirac matrices and the s-dependent back-
ground gauge field A;(x, t;s) interpolates adiabatically between A; = 0 at s = —~ and the original field A, (x, t) at
s = ~. For simplicity we assume that the eigenfunctions are nondegenerate and that there is no spectral flow. We
consider the following representation of the g invariant':

do) Tr
D +QJ

&[D] = —]

(These infinite sums can be defined by use of a (-function regularization. ) The first sum in (6) cannot contribute
to the chiral anomaly: Upon the addition of an appropriate anomaly-cancelling Weyl fermion its exponent will be
multiplied by 2. (It can therefore be considered as —, of a similar term in a regularized anomaly-free theory. ) On

the other hand, the second sum does not have any obvious CP symmetry and consequently it must contain the
anomaly. In the following only this term will be considered. We appeal to the fixed-time Schrodinger formalism
and second quantize the fermions in the time-dependent background of the gauge fields. ' On the fermionic states
the functional derivative operator then acts as the bilinear

2 ~ &, . r';~ a, ,a
lpga

where the creation and annihilation operators a, and a, depend on ~ through A„(r). The Fock vacuum ~vac;~) is
the state with all positive-energy levels empty and negative-energy levels occupied and

(vac;~ [ )vac;7) = —,
' X sgn(E, ) (r;7 [ [r;7) = ~„(g),5

(7)

where M„can be interpreted as a U(1) gauge field with base M . (It can also be viewed as the non-Abelian elec-
tric field induced oy vacuum polarization. ) Indeed, the matrix element (7) is ambiguous: We can redefine the
phase of the ferrnionic wave functions (and thereby the Fock vacuum) by any A-dependent but x-independent
functional F[A]. This corresponds to the U(1) gauge transformation W M+dF[A], where M=1„A„and
d= dA„S/W„ is the exterior derivative on W . Substituting (7) into (6) we find

5
—, g sgn(E, )y„(BC)= —

J d7 rl, A„(~) (vac;r ~
~vac;r) = —)$ dA„~„. (8)

r X

We observe that this term gives the leading semiclassical correction to the kinetic part of the classical action.
Furthermore, (8) is the Bohr-Sommerfeld integral))dq„p„which would equal 2mn for a stationary state. Obvious-

ly this can only be achieved if there is no chiral gauge anomaly. Using Stokes s theorem we convert the line in-
tegral (8) into an integral over a surface C bounded by the loop BC,
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Expanding the denominator up to first order in derivatives of s we find, after some algebra,

1 5 1
g[D) = — des Tr, g i'a, gl' P.

g2+ Q2+ 2 & g2+ Q2+ 2
s S

Introducing the (s-dependent) eigenvalues X„(s) and the corresponding eigenstates
~ n;s ) of the Hermitean opera-

tor Q, we then find in the leading order of s derivatives

(12)

(14)

(16)

g[D) = g ds (n;s [iB,QI'fn;s). (11)

Since we are only interested in that part of M that gives rise to the chiral gauge anomaly, it is enough to consider
only the parity-odd part of the Euclidean effective action, I(A;) = —,Trln(QI ). If we again introduce the interpo-

lation A; (s) a simple computation shows that up to a field-independent constant
i

I(A, )=-,' "" d;"I(A, (s))=-,' "ds Tr —'a, gr'I= —,
' gJ ds (n~B, QI ~n).

Comparing with (11) we then find, after a Wick rotation,

a = ~q(D).
Even though we have derived (12) in the adiabatic approximation we know' that (modulo 2m, i.e., modulo spec-
tral flow) it is exact for the operator (10). The 7l invariant is essentially the five-dimensional Chem-Simons secon-
dary characteristic class ~q, '

q(D) =i J cps(A) = (i/24m ) J dx Tr[A (dA) +-';A + —', A dA), (13)

and in order to relate cps to ~ we must first interpret it as a two-form on +3. For this we consider an arbitrary
two-surface on M parametrized by u&, u2, i.e. , with coordinates A,'(x;u, ,u2). On 4', (13) truncates to

&us(A) = (I/24m )Tr(X'A. A.')A t) A 6 Akdx'dxidxkdui'du

Upon integration of (14) over the physical three-space [recall that the original spatial coordinate x is an "index"
for the "coordinate" A„=A (x) on~ ] and since 8 A dui' is the pull-back of the one-form dA on+ 3, from (12)
and (13) we find, for the two-form m,

(i/24~2) &ijkTr( i agb~c)A a dA b dAc (15)

Notice that since .P is linear in the coordinate A„ the corresponding source is a constant [see (17) below]. Notice
also that (15) vanishes unless the fermions are in the complex representation of the gauge group. Indeed, by
analyzing the discrete symmetries of D we find that q[D) can be nonzero only if the fermion representation is
complex.

We shall now proceed to quantize the effective gauge-field Lagrangean: Consider the first sum in (6). In addi-

tion to A; (x, r) the Dirac Hamiltonian only involves space derivatives and consequently the eigenvalues Z„(t) can
only depend on r through the field A;(x, t) and its space derivatives. Since this sum does not contain time deriva-
tives of A; (x, r ), it can only contribute to the potential term of the effective Lagrangean. On the other hand, from
(8) we find that the second sum in (6) is linear in the time derivatives of A; (x, r ). Consequently, in the first-order
formalism the effective Lagrangean obtained after evaluating the fermion determinant is of the form

—F;;—(vac;~~ — ~vac;r) B,A +pi [A],1
a

where M[A] is the Hamiltonian density whose details depend on the first term in (6). From (16) we find that the
canonical momentum differs from the electric field,

5Leff a 1 ~ a= II = — = —E —(vac;71—— Ivac;~) .
SaA' '

i W' ' '
i 5A'

Notice that this system is an infinite-dimensional version of a qua~urn mechanical point particle that moves in the
background of a magnetic field ar"d in analogy with the finite-dimensional case covariant translations are generat-
ed by the "velocity" operator

E„=i +i (vac;7 ) )vac;v) = i +M„.5 . 5 . 5

The commutator gives the "magnetic field, "[E„,F~] =i M, and the Jacobi identity gives the "magnetic source
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density, "
[E„,[Ey,E,]]+(permutations) = —dM= — e" Tr(X'X g')dA, 'dA, dAf, (17)

Since the Jacobi identity fails, the covariant translations on Q do not associate and cannot form a Lie group.
However, since the right-hand side of (17) is constant the electric field forms a Malcev algebra,

[[E„,Ey], [E„E„]]= [E„,[[E„,E~],E, ]]+[E, [[Ey,E, ],E„]]+[E, [[E„E„],E„]]+[E„[[E„,E ],Ey]].

Elsewhere we shall show how this is generalized to an
arbitrary number of dimensions.

In conclusion, we have presented a complete first-
principles analysis of chiral anomalies. Since all

phenomenologically interesting field-theory models
contain Weyl fermions (for example, a Dirac fermion
is a direct sum of two Weyl fermions), we expect that
our approach will become useful in the analysis of real-
istic field-theory models. Finally, we have presented
our results in the hope that a deeper understanding of
the quantum structure of anomalous field theories will

eventually lead to their consistent quantization. '
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