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Variational Approach to Quantum Statistical Mechanics of Nonlinear Systems
with Application to Sine-Gordon Chains
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The path-integral method is used for determination of the quantum corrections to the free energy
of nonlinear systems. All quantum effects of the harmonic part of the potential are considered and
a variational principle is used to account for the quantum corrections due to the anharmonic part.
Correct renormalized frequencies are obtained at any temperature and an effective potential to be
inserted in the configurational integral is found. A new general expression for the partition func-
tion at any temperature in the low-coupling limit is obtained.
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Methods of reducing quantum statistical calculations to classical ones' are finding nowadays increasing applica-
tions to fiuid3 and solid" models. In one-dimensional magnetic chains, classical models are unsatisfactory5 (see,
e.g. , the CsNiF3 case) and quantum corrections have been taken into account ' in the low-coupling limit, restrict-
ed to the noninteracting soliton approximation, which fails in the range of temperature where the peak of the
specific heat occurs. Different expansions have also been proposed. 9 '

We use here a path-integral approach which improves upon previous variational treatments" by considering all
the quantum effects of th harmonic part of the potential, while the variational principle, in the first cumulant ap-
proximation, is used to account for the renormalized quantum corrections, both of potential and of frequencies,
due to the anharmonic part. Besides unifying the previous methods, ' our approach gives a correct effective po-
tential for all temperatures in the low-coupling limit and can be applied to systems where the energy scales of linear
and nonlinear excitations are well separated. Relegating the mathematical details of the theory to an extended pa-
per, we present in this Letter a brief account of the formalism and a concrete application to the sine-Gordon chain,
including a numerical evaluation of the specific heat throughout the temperature range, thus clarifying some
controversial issues on soliton behavior in planar magnetic chains.

The path-integral form of the partition function Z = e ~ is

x(0) =x(Pt)
& [x(u)]exp ( —1/I) I du (m/2) x, '(u) + )'(x(u))

I. i =1

The functional integral is evaluated over all the closed paths and the potential V is taken in the discrete form

)'= (m/2) f xB„x, X f U(x, ).

We assume that 8;, =8, +„~+„contains all the harmonic interaction [U"(0) =0]. The anharmonic part U(x) has
been taken to be local for simplicity, since the extension to a general U(x) is straightforward. We define

Ve= [y(y)+ g u, (y)[x, (u) —
y, [+(—,') g [x(u) —y;[uu(y)[x, (u) —y)[,

withy = (I/Pt) f x(u)du. The functions 8; w;, and w,, must be chosen in order to minimize the right-hand side
0

of the first-order cumulant inequality

F ~Fp+ ( V —V[))p,

where Fp and the average are defined with use of Vp instead of V. It is worthwhile to note that wj. (y) are not tak-
en equal to ();J V(y) = mBp. +g5;, U" (y), but are determined by the variational principle. As will be shown in the
following, this is a crucial point to avoid unphysical results at lowest temperatures and just this full application of
the variational principle leads to the correct frequency renormalization.

If we denote by 0„ the orthogonal matrix which diagonalizes the symmetric matrix w;, and by cuk(y) the corre-
sponding k th eigenfrequency, it can be shown that the search for the extrema with respect to ~j is equivalent to
that with respect to cuk (y) and 0„, once the appropriate constraints are inserted.
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The evaluation of the functional integral gives

e '= (m/2m' 'p) i'
' d y exp[ —p W'(y) ] Q (f /sinhf„),

With fk h=posk/2

The function W which minimizes the inequality (4) reads

ex
+'(y) = Jt d v) V(ore)+y) Q

(Vrnk)'i' k t'P' '

where the parameter

nk = (h p/2mfk ) (fi, coth fk —1)

is twice the difference between quantum and mean square displacements of the kth oscillator of frequency cok(y).
These quantities give the behavior of the Gaussian quantum spread from the harmonic oscillator in the ground
state (P ~) to the free particle at high temperatures. Moreover, IV(y) is such that ( V —Vo) o vanishes, allow-
ing the definition of an effective potential V,ff to be inserted in the configurational integral, giving an equivalent
"classical" free energy Fo which accounts for the quantum corrections in the one-loop approximation. Explicitly,
denoting by Ut "~ the n th derivative of U, from Eqs. (5) and (6), we get

V,rr= V(y) —P X (lnf„—lnsinhf„) —g g U "'(y )( D)"——1 (n —1) ]

k I' 1l =2

with the quantum renormalization factor

D = Xk Ok', ( k/2).

The variational principle for oak(y) and 0„(y) leads to the following self-consistent equations:

X„0;,[&„+(g/m»„(y) ]Ok, = ~k (»~ik (10)

ex
P„(y) = n„Jt d~q U'"((0Tq+y ), ) II

k ~~k

In Eq. (8), the logarithmic terms represent the differ-
ence between the quantum and classical free energy of
harmonic oscillators whose frequencies are renormal-
ized, through Eqs. (10) and (11), by the quantum
fluctuations. The spread of the anharmonic part is also
present in jeff. This approximate treatment of the
quantum effects does not require the knowledge of the
classical "trajectory" and the problem is now referred
to the evaluation of the configurational integral with
an effective potential. In a different context, effective
potentials, at finite temperatures, were introduced in
field theories' without any variational principle for
determination of the frequencies.

The self-consistent equations (10) and (11),
although easily solvable for a single anharmonic oscil-
lator, look formidable for interacting fields and their
solution involves a self-consistent diagonalization of a
matrix which, in the general case, can be done by nu-
merical iterative methods. However, some properties
of the frequencies &uk(y) can be inferred from the
structure itself. In particular, it is worthwhile to note
that Eqs. (10) and (11) prevent us from having ima-
ginary &uk(y) with f„=in, which would cause unphys-
ical divergences in the effective potential, and that all
frequencies are real in the limit p oo, while cok(y)

= ( I/m) t),,' V (y) only for P = 0.
%e finally note that in some range of temperatures

V ff can be easily evaluated. At highest temperatures
or for small quantum effects, we have nk =h p/(6m)
and the effective potential reads

V,„,= V(y) + (h' P/24m) g,. 8,', V(y) (12)

in agreement with Ref. 11 and reproducing the first
term of the Wigner approach. '

At lowest temperatures, the evaluation of the
configurational integral can be performed around the
local minima with steepest descent procedure. In this,
cok's are calculated at these minima and represent the
renormalized frequencies of the oscillations around
vacuum and soliton solutions. However, for a con-
sistent full treatment of finite-temperature effects in
the mean-field approximation, the classical renormali-
zations of the frequencies turn out to be included also.

We now apply our theory to the sine-Gordon (SG)
chain. We have

~rs = &o(2~rs —5rs t
—

or, s+ i) + & i~rs-
(13)

U (y) = g„(m &', /g') [1—(g'y, '/2) —cos(gy„) ],
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so that, with neglect of zero-point constants,

V,«(m IIo/2) g, (y, —y, +~) —p
' g„ ln(fk/sinhfk) —(m Ot/g ) g, cos(gy, )e g (1+g D/2), (14)

I'„=5„,(m 0', /g ) [cos(gy, )e t' —1]. (IS)

It is straightforward to see that Eq. (10) cannot give negative values for any &uk2(y) for lower and lower tempera-
tures, where the main contribution to the partition function arises from the local minima of V,«. These can be
determined, for low coupling, by the following equation:

00(2y, —y, t
—y„+t) + (II fe g t'/g)sin(gy, ) =0, (16)

which, in the continuum limit, becomes the sine-Gordon equation with the renormalized frequency
II

& exp( —g D/4). For p ~ the only contribution comes from the vacuum sector y, =0. Taking into account
that Q„, is now the matrix which diagonalizes B„„weobtain the self-consistent equation

&ok
——40O sin (k/2) + II, exp( —g Do/2),

with Do= (1/N)/k''/2mcuk. When the temperature increases the variation of D can be calculated according to Eq.
(9); the classical Gaussian (Hartree-Fock) approximation, holding at low temperatures, gives a further renormali-
zation to II& represented by the replacement of n„with n„'= (t/mes„)coth(hpco„/2). The new renormalization
factor D contains both quantum and classical temperature effects. The contribution of the local minimum, corre-
sponding to a static solution y =yt ~, must also be included. By substituting the solution yes~ in Eq. (10), we get
the new spectrum of the small oscillations and the results of Ref. 6 are recovered.

At highest temperatures, or for small quantum effects, Eq. (12) gives the following effective potential:

V,« ——Nt P2002/24+ g [(m Ao/2) (y„—y, +&) —(m/g ) A, [1—g t P/(24m )]cos(gy„)]. (18)

The first term is the quantum correction" of the oscillators, of frequency Ak = 20o sin(k/2), related with the
nearest-neighbor interaction: At this level they are equivalent to N Einstein oscillators with frequency 0 = 4200.
On the other hand, the quantum effects related to the SG potential can be taken into account by simple renormali-
zation of the frequency 0, &.

Let Es be the classical soliton energy and let us consider the low-coupling (Q =f II &/Es « 1) displacive limit
[e = (A t/20O)2 « 1]: The point of view of Eq. (18) can be extended to lower temperatures by use of the our ef-
fective potential. Indeed, under these conditions, the contribution of the logarithmic term to V,« in Eq. (8) main-
ly comes from oscillators with higher k's, so that this term, containing only quantum corrections, can be safely ex-
panded in terms of Q &. Of course, any modification Of the radiation due to nonlinearity is included in the config-
urational integral which is not necessarily bound to the dilute-gas approximation.

In the low-coupling limit we obtain

e = (m/27rf p) t Q (fk/ksinhf )k

x Jt d y exp {—p (m /2) g, [Q o (y„—y, + ~ ) —(2 II f e /g )cos (gy„) ]], (19)

where fk =h'pIIo sin(k/2). The quantum renormalization factor can be calculated at all temperatures with use of
the frequency spectrum of the oscillations around the vacuum solution within an approximation consistent with the
displacive limit. One obtains

C t 2 —1/2
4QR $ ( )4 QR I+/

( )2 Q R
16R2 2gt2

(20)

with t =kaT/Es, R = Qo/0&, and $= (1+e)
From the behavior of D (T), plotted in the inset of
Fig. 1, one can see that its value, at the temperatures
where the peak of the specific heat for the classical
system occurs, is only 30% of the value at T =0.

The equivalent free energy Fo as given by Eq. (19)
presents some interesting aspects and constitutes an

important improvement over previous theories. In the
high-temperature limit V,«, as given by Eq. ,18), is
recovered. For decreasing temperatures, the free en-
ergy presents a Debye behavior with an added contri-
bution due to a classical SG potential in which 0& is
replaced by its quantum renormalized counterpart.
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FIG. 1. Nonlinear contribution to specific heat
C = C"'/(4e)' vs t. Full line: classical result. Dotted line:
classical result without soliton-soliton interaction (Ref. 13).
Dashed lines: quantum results for Q =0.1 and R =2, 10.
Inset: quantum renormalization factor D vs t for R = 2, 10.

%e finally observe that our general results support
the numerical conclusions of Ref. 10, which hold in a
limited range of temperature only. The discrepancy al-
ready noted in Ref. 10 with respect to Ref. 9 is con-
firmed. Although Eq. (19) could lead to qualitative
conclusions similar to those of Ref. 9, the correct re-
normalization factor is quite different, so that the
quantum corrections are, in fact, much smaller than
those predicted in Ref. 9, raising some doubts on the
validity of that approach, which does not reproduce
even the high-temperature results given by our Eq.
(18).

Thus the contribution of all nonlinear excitations to
free energy can be reduced to the calculation of a clas-
sical configurational integral where all the well-known
classical techniques, such as interacting-soliton
models, ' high-temperature expansions, and, eventu-
ally, transfer matrix numerical calculations, can be
used.

The nonlinear contribution to the specific heat
versus the temperature is shown in Fig. 1 together
with the classical result. For the range in which Q and
R are considered, the quantum corrections are impor-
tant for the harmonic part, while they do not much af-
fect the anharmonic contribution. The large difference
with respect to the classical dilute-gas approximation is
mainly due to the soliton-soliton interaction which can
be considered nearly classical. If the one-dimensional
ferromagnet CsNiF3 could be thought of as a sine-
Gordon system, the appropriate values of its parame-
ters would be Q = 0.11, R = 5. Hence, the quantum
corrections would not sensibly modify the behavior of
the classical specific heat obtained by the exact
transfer-matrix approach. ' The mismatch with exper-
iments must be attributed to the inadequacy of the
planar model and to the great influence of the out-of-
plane quantum fluctuations.
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