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Transient Chaos in Dissipatively Perturbed, Near-Integrable Hamiltonian Systems
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%hen near-integrable Hamiltonians systems are perturbed by dissipation, then the stable orbits
become simple attracting sinks, the Kolmogorov-Arnol'd-Moser tori are destroyed, and persistent
chaotic motion disappears. We determine analytically the mean lifetime, the quasistatic distribu-
tion, and the fraction trapped into the various sinks for a dissipatively perturbed area-preserving
twist map.

PACS numbers: 03.20.+i, 02.50.+s, 05.40.+j, 05.45. +b

Two-dimensional, near-integrable, measure-preserv-
ing maps are used to model conservative physical
phenomena in such fields as celestial mechanics,
cosmic-ray physics, accelerator theory, and plasma
heating and confinement. ' Conservative systems of
two nonlinear coupled oscillators are also used widely
as physical models. This system motion also generates
such maps as the phase-space orbit repeatedly pierces a
surface of section.

The phase-plane structure in near-integrable
measure-preserving maps is well known. There is
persistent regular motion on some perturbed
Kolmogorov-Arnol'd-Moser (KAM) orbits and on
KAM "island" orbits surrounding stable fixed points
of the map. Regions of persistent chaotic motion are
densely interwoven with these regular regions. The
measures of the regular and chaotic regions can vary
widely, both within the phase plane and as a function
of the system parameters.

This structure is not stable under dissipative pertur-
bation. The stable fixed points become attracting
centers (sinks), and all KAM curves are destroyed.
Although transient chaotic motion generally exists, the
phase point eventually enters an embedded island and
is attracted to an island sink; the motion ultimately be-
comes periodic. The complete destruction of per-
sistent chaos when a weak dissipation is added to a
near-integrable Hamil tonian system is typical and
probably generic behavior. It is clearly of interest to
understand this degeneration from persistent to tran-
sient chaos.

In this Letter, we present the first analytical study of
transient chaotic motion for a class of near-integrable
Hamiltonian twist maps that are perturbed by dissipa-
tion. We determine analytically such properties as the
mean lifetime for chaotic motion, the quasistatic distri-
bution for the transiently chaotic region, and the prob-
ability of trapping into the various embedded islands.

We note that above a critical dissipation strength, a
new type of attractor ("strange attractor") in the
phase plane can appear, on which the motion is per-
sistent and chaotic. We have considered this case

elsewhere.
We illustrate the calculation procedure for transient

chaos using as an example the dissipative Fermi
map. However, the procedure is directly applicable
when dissipation is introduced into other twist maps
such as the Chirikov- Taylor and the separatrix
maps. The Fermi map describes a cosmic-ray ac-
celeration mechanism' in which charged particles are
accelerated by collisions with moving magnetic field
structures. In the model, a ball bounces in one-
dimensional motion between a fixed and an oscillating
wall. We adapt a simplified model" in which the mov-
ing wall oscillates sinusoidally, x„(t)= a coscot, and
elastically imparts momentum to the ball according to
its velocity x without the wall changing its position in
space. We introduce dissipation by assuming that the
ball suffers a fractional loss 5 in velocity upon collision
with the fixed wall. The map is then

u = (1 —5)u„—sing„,

y = y„+27rM/u,

(y„+,, u„+, ) = (y, u)sgnu,

(1b)

(1c)

(uk, Qk) = (M/k, sin '( —uk/)), (2)

where k is an integer. There are two fixed points for
each k: p„= 0 or p„= 7r for u„5 « 1. p„= m is
stable for u„) u, = (7rM/2)'; p„= 0 is always un-
stable. For 5=0, invariant (KAM) island orbits sur-

where u„= u„/2toa is the normalized ball velocity and
p„= tot„ is the phase of the oscillating wall, and
M = I/(27ra ) is the normalized distance between the
two walls. The functions sgnu = + 1 for u () 0, and is

introduced to maintain u„+ &

~ 0 for 1ow velocities
u„& (1 —8) ', as physically occurs in the exact
model, while preserving the continuity of the map
near u =0. The Jacobian of the map is 1 —5, and thus
the map is area preserving for 5 = 0.

The primary fixed points of the map are found by
setting u„+,——u„and p„+ &

——$„(mod2m) in (1). We
obtain
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round the stable fixed points. The location, stability,
and bifurcations of these fixed points have been
described in detail previously.

We summarize the behavior of the motion, deter-
mined by numerical iteration, as the parameters M and
5 are varied. For 5 = 0, there is no dissipation and the
usual Hamiltonian chaos ensues, with intermingled
areas of persistent chaotic and regular motion in the
(u, Q) phase plane. Numerical iterations for
10 & M & 10 show" ' that the phase plane divides
into three characteristic regions: (1) For large veloci-
ties, u ) ub = 2u„ invariant (KAM) curves span the
plane in p and isolate the narrow layers of stochasticity
near the separatrices surrounding the fixed points of
the map; (2) there is an interconnected stochastic re-
gion for intermediate velocities, u& & u & u„ in which
invariant islands near stable fixed points of the map
are embedded in a stochastic sea; and (3) there is a
predominantly stochastic region for small velocities,
u ( u„ in which all primary fixed points are unstable.
The globally stochastic motion within the connected
regions (2) and (3) is isolated from region (1) by a
KAM barrier at ub, and has a constant equilibrium in-
variant distribution fo(u, p). '

For weak dissipation, 0 & 5 & 5„ the numerical
iterations show that the fixed points of the Hamiltoni-
an map become attracting centers (sinks), the KAM
curves no longer exist, and all persistent chaotic
motion is destroyed. However, transient chaotic
motion surrounds the sinks in regions (2) and (3). As
an example, for M = 30 (8, = 0.02) and 5=0.003, we
find that an initial phase point chosen randomly in re-
gion (3) undergoes transient chaotic motion for a
mean number of iterations N = 13 000 before it enters
an embedded island in region (2) and becomes trapped
in an island sink. For the eleven cases studied, the de-
cay from the transiently chaotic region is observed to
be exponential at a rate n = N, which is tabulated as
the first entry in Table I.

In Fig. 1, we plot the cumulative phase-integrated
distribution

1V p2m
f(u) =100JI dnJ

deaf(u,

p, n),

for M = 30, 5 = 0.003, after N = 5 & 10 iterations, for
100 initial conditions at low velocities chosen random-
ly. We see evidence of attracting sinks between u, and
ub near the primary resonances at k = 3 (a period-1
and a period-5 sink coexist) and at k = 4 (a period-1
and a period-3 sink coexist). The density leaving the
stochastic region flows into these sinks, forming spikes
in the figure. For all cases studied, the location and
structure of these sinks correspond to the Hamiltonian
(5=0) structure of the stable fixed points (2) of the
Fermi map. The period-3 and period-5 sinks corre-
spond to secondary fixed points encircling the period-1
primary fixed points, as described in Ref. 1, Sect. 2.4.

TABLE I. Numerically and analytically determined decay
rates a (in units of 10 '), for various values of M and h.

0.0003 0.001 0.003 0.01

30
100
300

2.0/2. 5

1.2/2. 0
1.1/1. 1

2.7/6. 6
2.0/3. 6
1.1/0. 90

7.4/12. 0
2.9/2. 6
0.40/0. 16

7.7/II. 6
1.1/0. 29

Numerical studies for various values of N, M, and
5 &( 1 show that an exponentially decaying quasistatic
distribution

f (u, y, n ) = fo(u )exp( —an ) (3)

is formed for n & uq = 2+M, for values of u outside
of the "sticky" islands.

The distribution ff2 can be found analytically by
solving the appropriate Fokker-Planck equation for the
map'6

"df 1 8 D Bf
Bn 2 flu Bu

B(Bf)
Bu

(4)

where, to first order in 5, D is the diffusion coefficient
for the area-preserving (5 = 0) map, and B = —u 5 is
the friction coefficient due to the dissipation. ' For
u & u„D = —,', the quasilinear value. However, the
domain of interest includes the region u, & u & ub, in
which the quasilinear diffusion coefficient is invalid.
To obtain an estimate of D in this region, we locally
expand (1) in u about a fixed point u„, which yields

I„+t
——I„(1—5) +K sinH„—uk', (5a)

~a+~ = an+In+i (Sb)

IO

)o'-
f (u)

iO4-

ax lO'
0

I

IQ lZ
(27T M~'~

FIG. 1. Cumulative, phase-averaged distribution f vs u,
for M =30, &=0.003, and W = 5&&10 iterations. The solid
curve shows the numerical result; the dashed curve shows
the quasistatic theory.
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where

I„=—K (u„—ul, ),

(6b)

and

K = 27rM/ui, (7)

is the stochasticity parameter. For 5=0, (5) is the
Chirikov-Taylor or "standard" map, ' which has a dif-
fusion coefficient D that depends on K. For K & 4,
corresponding to u & u„we have D = K2/2, the
quasilinear value. For 4 & K & 1, corresponding to
u, & u & ub, one finds

D~ (K —1)",

obtain

A A I, ( ui, ) = 3 5/K. (11)
2 is a function of K = u&/u& alone that can be found
analytically' or numerically. A good approxima-
tion for 1 & K & 6 is 3 = 2m K ' . For the results
in Table I, we determine 3 numerically by setting 5 = 0
in the first term on the right-hand side of (Sa). The
small correction in 3 due to the last term —u&5 in
(5a) was therefore included.

Chirikov and Izraelev ' showed numerically that the
decay rate due to a sink varies directly as 43&. For
nonuniform fo, however, the decay rate should also
be proportional to f& at the sink. Using (10) and (11),
we obtain the decay rate for the transiently chaotic re-
gion,

with the estimate y = 2.5 for 4 & K & 1 obtained nu-
merically, and the asymptotic result' ' near K =1,
y = 3.01. However, over the entire range K & 1, a
reasonable fit to the numerical data for D is

k o.'k

where

ni = f0 (ul )AAg

(12a)

(12b)
K2 K —1 (8)

with y =2. Transforming from I back to u, we have
D = D/K, and with use of (7) and (8), we obtain, for

& ub,

D = —,
' (1 —u'/u~')'. (9)

Using 8 = —uh and (9) in (4) and the condition that
the net flux is zero, we obtain

fg (u ) = F exp[ —2pu'/(u~' —u') ],

where

F = (2mu„p) '[K (p) —Ko(p)1

x exp( —p),

(Ioa)

(lob)

P = u& 8, Kt and Ko are the modified Bessel functions,
and

2m), dufg(u) = l.
0

This distribution, scaled to the value of f'at u =0, is
plotted as the dashed line in Fig. 1. The agreement
with the numerical result outside the island regions is
excellent. Equally good agreement is found for all

other cases listed in Table I.
We now determine the phase-space area AAI, in the

transiently chaotic region that is "eaten" by each pri-
mary island during one iteration. The standard map
[(5) with 5=0] has a closed KAM barrier I(0) with
area 3 surrounding the central fixed point
(I, 0) = (0, 7r). This barrier curve separates the outer
chaotic region from the inner closed island orbits. For
5 & 0, 3 contracts by the factor 1 —5. Thus AA =A 5.
Transforming back to (u, p) variables using (6), we

and the sum is over all stable primary fixed points uz
in the region u, & u & ub.

The first entry in Table I gives the exponential decay
rate n determined by numerical iteration of 100 ran-
dom initial phase points at low velocities; the second
entry gives the analytical result (12). The agreement
is seen to be quite reasonable.

We have seen that all initial points are ultimately at-
tracted to the stable fixed points of the map. The frac-
tion p,„(= n„/n) of initial phase points that ultimately
stick to the various main-island fixed points (including
their secondary fixed points) can also be found analyti-
cally with use of (12b). In Fig. 2, we plot the ratio
Ri, ——p, i, (analytical)/p, „(numerical) for all stable u„ for
the cases in Table I. For M = 30, A.. = 3, 4; for
M=100, k =5—8; for M =300, k =9—16. We see
that (12b) agrees well with the numerical results.
Even better agreement is obtained by use of y = 3 in

(8), particularly for those islands that are close to the
adiabatic barrier ub. We expect a better estimate for D
in (8) to yield even closer agreement to the numerical
results for n and p,z.

Several addi tional features observed numerically
remain to be brought within the framework of the
theory presented here. In several cases in Table I, a
few of the hundred initial conditions were attracted to
a primary resonance having period two. These reso-
nances, u„+2 ——u„, Q„+2 ——P„(mod27r), are located
near u„= 2M/k, k odd, and are stable within some
parts of region (2). We believe that the effect of these
higher-period sinks can be treated analytically by con-
sidering the square, cube, etc. , of the map (1).

For the case M = 100, the stochasticity parameter
for the k = 8 fixed point at 6=0 is K = 4.02. Thus
this fixed point is linearly unstable, and a stable, bifur-
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mary to secondary resonances is described in Ref. 1,
Sects. 2.4 and 4.3. The technique may also be applica-
ble to the special class of maps, studied by Feigen-
baum, Kadanoff, and Shenker and Ostlund et al. ,
in which a single (attracting) invariant circle is retained
when the map is dissipatively perturbed.

An expanded description of our technique and
results is in preparation. The support of the Office of
Naval Research, Contract No. N00014-84-K0367, and
the National Science Foundation, Grant No. ECS-
8104561, is gratefully acknowledged.
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FIG. 2. The ratio Rk of the analytically to numerically
determined fractions p, k of initial phase points attracted to
the various island sinks, for all the cases given in Table I.

cated periodic orbit appears nearby. However, a
KAM barrier having area 3 still surrounds this
period-2 orbit. The size of 3 depends delicately on h.
Thus we determined 3 by numerically iterating the
map (5) with 8 set equal to zero in the first term on
the right-hand side of (Sa). In general, the areas of
the stable period-2, -4, etc. , islands are small.

Another numerical observation is that within each
island surrounding a primary sink at uk, there are a

number of secondary sinks having periods greater than

1. For example, Fig. 1 sho~s a period-5 secondary
sink surrounding the primary sink at u3=10, and a
period-3 secondary surrounding the primary sink at
u4= 7.5. We determined in (12) only the total fraction
of initial orbits eaten by an island, and not the distri-
bution among the primary and secondary sinks within
the island. We believe that the lat ter distribution
might be determined by first transforming to obtain
the separatrix mapping associated with the primary
resonance uk and then applying the theory presented
here to the separatrix mapping. The procedure for ef-
fecting this renormalization transformation from pri-
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