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Quantum Tunneling Using Discrete-Time Operator Difference Equations
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Canonical discrete-time operator difference equations are introduced as an alternative approach
to the numerical solution of a quantum field theory. We apply these techniques to the solution of
the operator Heisenberg equations of motion describing the problem of quantum-mechanical tun-
neling. Our numerical solutions accurately depict the time evolution of (q") and of a local proba-
bility measure.
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As an alternative approach to the numerical so1ution
of a quantum field theory it has recently been pro-
posed' that the operator field equations be solved
directly by time stepping of the operator on a Min-
kowski lattice. The canonical operator difference
equations can be either implicit, as derived from a
finite-element approach, or explicit, as derived from a
finite-difference approach. These techniques are
canonical in the sense that the iteration scheme exactly
preserves the equal-time commutation relations at
every lattice point. Furthermore, they lead to a con-
sistent formulation of fermions and of gauge invari-
ance. "

Quantum mechanics provides a convenient laborato-
ry for the study of these techniquess 6 and for the
development of them into practical computational
tools. In one-dimensional quantum mechanics one
obtains operator difference equations on a time lattice
as an approximation to the operator Heisenberg equa-
tions of motion and these equations provide a nonper-
turbative method for the study of quantum processes
in real time. It seems natural to apply these new com-
putational ideas to quantum tunneling.

Certain aspects of this problem have recently been
studied. Using the finite-element method Bender
et al. investigated tunneling in a quartic potential in a
one-finite-element approximation and obtained good
results for short times. In a second paper Cooper, Mil-
ton, and Simmons studied the long-time behavior of
the motion of a wave packet in the classically allowed
region of an inverted parabolic potential. That study
compared the numerical accuracy of various implicit
and explicit quantum differencing schemes.

The purpose of this paper is to extend the develop-
ment of operator-difference techniques to a practical
computational scheme for quantum problems. We use
an explicit differencing scheme to study the motion of
an initial Gaussian wave packet in a degenerate
double-well potential.

on a discrete time lattice and by measuring matrix ele-
ments of appropriate operators in the false vacuum
state represented by (2).

The recurrence relations that we use to express the
quantum operators at time step n + 1 in terms of those
at time step n are

q„+ t
= q„+hp„——,

'
h 2 V' (q„),

, =p„——,
'

h [ V'(q„) + V'(q„, ) ],

(4a)

(4b)

where h is the time-lattice spacing At and q„and p„are
the Heisenberg operators on the discrete time lattice.
q„and p„are accurate approximations to the position

The continuum Hamiltonian is H = —,
' p2+ V (q),

where

V(q) = 4q'(q —P)'/P'.

This potential is symmetric about q = —,P and has ap-
proximately harmonic wells centered at q = 0 and
q = p. Near q = 0 the approximate potential is
V, „„(q)= 4q whose eigenvalues are E„=J8
&& (n + —,

' ). The normalized ground-state wave func-
tion of + pp „is

@o(q) = (to/m)' 4exp( —q'to/2), (2)

where to = J8. We choose @o as the initial coordinate-
space wave packet, centered at q =0 in the left well
when t =0. If to/2 ( P /4, the barrier height, the par-
ticle represented by the wave packet @o is classically
confined and the wave function tunnels with a fre-
quency determined by the energy splitting of the al-
most degenerate ground state and first excited state.

We study this tunneling process in the Heisenberg
picture by directly solving the Heisenberg equations of
motion,

q(t) =p(t), p(t) =- dv(q)
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q11
——(2t0) 'i (ap+ap ) (sa)

and momentum operators q (t) and p (t) at time
t = nh, with error of order h . This differencing
scheme shares with the finite-element method the
property that it is canonical; that is, it exactly preserves
the equal-time commutation relation [q„,p„]= i at
every time step (it is a unitary scheme). 2

The equal-time commutation relation for n = 0 (that
is, t = 0) allows us to define a Fock space of states Ik)
such that apIO) = 0, where

vent the algebraic complexity. Because

(j Iqplk& = (2') 'j'(~jp, k+1+~&~k, +1), (9)

where j,k = 0, 1, 2, . . . , it is not difficult to see that
(OIqp IO) can be calculated exactly by matrix multi-
plication with a matrix representation of qo of dimen-
sionality d =1+iV; of course, (OIqp

+'
IO) =0. From

the form of the potential &(q) in (1) and the re-
currence relations (4) it then follows that we can cal-
culate (OIq~IO) exactly using the finite-dimensional
matrix representations

and

pp
——i ( —,

' c0)'j2(ap —ap). (Sb)
(qp)jk (2~) (~j hj k+1+~k ~kj +1)

(pp) 'k 1 ( 2 p1) (~j l1j,k+1 ~k ~k j+1)~

(loa)

(lob)
The coordinate-space representation of IO) is @p given
in (2). To study tunneling in the Heisenberg picture
we calculate

r, (t) = &OIqt(t) IO) (6a)

= JI 1clp(x, t)x'1ltp(x, t)dx, (6b)

where 1ltp(x, t) is the wave packet that evolves from
1tjp(x, 0) = @p(x) under the action of the Hamiltonian.

Another quantity of interest is the fractional proba-
bility, as a function of time, for the wave packet to
remain in the left well; this directly measures the tun-
neling time. In the Schrodinger picture such a proba-
bility measure is

P/2
PL (t) = Jt 1Itp(x, t) tpp(x, t)dx. (7)

In the Heisenberg picture it is more convenient to
measure an operator that has most of its support in the
left well. We choose

L «) = (OIpj'(p+q') IO),

which has behavior quite similar to Pt (t). We find
that PL (0) = 0.97.

The recurrence relations (4) are attractive because
they allow, in principle, an exact symbolic iteration by
means of an algebraic-manipulation program such as
MAcsYMA. One organizes the iterates q„and p„, for
n =1, 2, . . . , jV, expressed in terms of the Fock-space
operators a and a, in normal-ordered form. It is then
trivial to calculate any matrix element of any poly-
nomial in qp and pp. The replacement t = h/N then
produces an approximate Taylor series in t for the ma-
trix elements, exact to order t, and converging to the
exact Taylor series as N, where N is the number of
iterations. Because of the nonlinear nature of the
equations (4) the algebraic complexity of the iterates
grows very rapidly. With our present MACS YMA tech-
niques it is impractical to calculate more than four or
five iterates.

Alternatively, one can recognize that finite-
dimensional numerical matrices can be used to circum-

for 1~j,k ~D, where D= —, (3 +1). The matrix
size for this exact calculation grows very rapidly with
the number of iterations and the limit imposed by
computer memory and computational time is likely to
be N ~7.

Because of the difficulties described above in the ex-
act iteration scheme, we found for practical purposes
that a numerical approach was needed. The numerical
approach is to approximate the infinite matrices po and

qo by sequences of larger and larger D XD matrices
given by (10) and to iterate (4) with fixed values of D
and h. We have implemented the scheme in FoRTRAN

and studied the numerical stability and convergence as
a function of D and h.

At fixed D we studied convergence of our results as
a function of h. We found at all D that for h ~ 0.07
the results were stable to at least two significant fig-
ures; for h ~ 0.008 we found a four-significant-figure
stability. Of course, at small D the answers at large t
are far from the correct infinite-D limit.

We next kept h =0.008 and studied convergence to
the infinite-D limit as a function of t (at small t finite
matrices are exact. ) We note that the dimension D
controls the number of harmonic-oscillator basis states
in the t =0 Fock space. We compared larger and
larger D x D matrices and found for the potential (1)
with p= 2.5 the following times of validity with four-
place accuracy: For D =4, t ~ 1.6; D = 8, t ~ 3;
D = 16, t ~ 10; D = 32, all t examined (t ~ 30).
These internally consistent results were then con-
firmed by comparison with a numerical integration of
the Schrodinger equation which gave also a four-
significant-figure agreement with the D = 32 results at
all times t ~ 30. Running up to t =30 sufficed to
display two complete oscillations in the tunneling.

In Figs. 1 and 2 we display our numerical results for
iteration of the system (4) using 32&& 32 matrices and
h =0.008, extending out to t =30. This calculation is
enough to display two complete oscillations in the tun-
neling. This D = 32 calculation agrees to four signifi-
cant figures with a numerical integration of the
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