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We present results for the gravitational radiation from the collapse to a black hole of rotating rel-
ativistic polytropes. The wave form closely resembles that emitted by a test particle infalling into a
black hole, but the amplitude is reduced and opposite in sign. Less than 0.07% of the star’s mass is
converted to gravitational-wave energy. With sufficient rotation, the star bounces and no black
hole forms. These results were obtained with a fully general-relativistic computer code that evolves
rotating axisymmetric configurations and directly computes their gravitational-radiation emission.

PACS numbers: 95.30.Sf, 04.30.+x, 97.60.—s

The complexity of the Einstein equations has, until
now, limited the calculation of the gravitational radia-
tion from gravitational collapse to either approximate
perturbation results,! or numerical methods applied to
unrealistic configurations.”® As a result, estimates for
the emission of gravitational radiation from a rotating
stellar collapse have been wildly uncertain. We report
here numerical results for this gravitational radiation
obtained with a general-relativistic code which evolves
general axisymmetric configurations (either matter or
vacuum initial data) by solving the complete coupled
Einstein and hydrodynamic equations, and directly
evaluates the resulting gravitational emission at large
radii. The particular collapse we present (that of a ro-

J

tating polytropic star) is not meant to model a realistic
stellar collapse (this requiring still uncertain astrophys-
ics).! Nevertheless, most of the gravitational-radiation
emission in a collapse to a black hole occurs late into
the collapse (when the collapsing configuration has
dimensions less than 2 Schwarzschild radii) when pres-
sure and other microphysical effects no longer dom-
inate, so that our results can be expected to be at least
representative of such an event, provided axial sym-
metry is maintained.

We solve the ‘3 + 1"’ form of the Einstein equations
in which the spatial metric, A;, and the extrinsic cur-
vature, K;/, are evolved from one selected spatial hy-
persurface to another. We use the radial gauge sug-
gested by Bardeen and Piran.* The four-dimensional
metric has the form

ds’= — (N?—=N'N;)dt?>— 2N, dx'dt + h2 dr* +r*d6*/ (1 + ) +r2(1 +n)sinfd¢d +£d9)?

with ¢ the time label, N the lapse, and N' the shift vec-
tor. The foliation we use consists of a combination of
polar and maximal slicing. There are many advantages
to this choice of gauge.*® A key point is that two of
the evolved gravitational field variables—n and ¢—
tend to the transverse traceless gravitational-wave am-
plitudes # . and 4« at large radii. This allows a direct
determination of the gravitational wave form.’> The
gravitational emission is so small that only a carefully
devised scheme is able to detect it numerically.’

We solve seventeen coupled partial differential
equations in the three coordinates (¢, r, and 0) for
twelve geometrical variables (4, n, ¢, five com-
ponents of K/; N, and N') and five hydrodynamic
variables (the density, thermal energy density, and
momentum density). We use the numerical scheme
described by Bardeen and Piran.* This scheme is par-
tially constrained (the Hamiltonian constraint is solved
for h,; m, & and k/ are evolved). The evolved value
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of A, and the momentum constraints are used as
checks. The code, which will be described in detail
elsewhere,® is second-order accurate and employs a
staggered-variable grid with grid velocity.> %39 Each
timestep takes 0.15-sec central-processor-unit time on
a Cray-1 for a grid of 80x16 radial by angular
points,® 12 and 3000-5000 time steps are required for
the results we describe here.

It is essential that a code of this kind be shown to
pass rigorous testing. We have performed an exten-
sive series of tests which can be broadly classified into
general stability tests, hydrodynamic tests, conserva-
tion tests, and comparison tests with known perturba-
tion solutions. These tests include the following: (i)
Evolution of the vacuum Schwarzschild exterior
(r > 2M) for many gravitational times. (ii) Propaga-
tion of gravitational waves (for both polarizations)
along inward and outward characteristics with negligi-
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ble reflection at the outer boundary. Evolution to flat
space-time for low-amplitude waves, and black-hole
formation for high initial wave amplitudes. (iii) Stable
evolution of initial data consisting of flat space-time
plus a small-amplitude ‘‘random data’’ superimposed.
(iv) Evolution of stable extreme relativistic polytropes
for many free-fall time scales. This included checking
the excitation of the lowest radial mode oscillations for
adiabatic indices I' > I';;;, as well as the instability to
collapse for I' < T [with Ty =3 + (general-rela-
tivistic corrections)].’* (v) Conservation of the
Arnowitt-Deser-Misner mass, total angular momen-
tum, and the specific angular momentum spectrum.
(vi) Propagation of generalized linearized Teukolsky
waves! for both polarization modes. (vii) Compar-
ison of the gravitational-wave emission from the infall
of a spheroidal dust shell onto a Schwarzschild black
hole with known perturbation results!>!® (Fig. 1).
(viii)) Comparison of the gravitational-wave emission
and hydrodynamics for uniformly rotating homogene-
ous spheroidal collapse with known Newtonian plus
quadrupole-formalism results.!® These tests will be
discussed in detail elsewhere.?

Here we present results!®!2 for the collapse of a pol-
ytropic star with adiabatic index I'=2. The initial con-
figuration is that of a spherically symmetric (relativis-
tic) polytrope with a radius of 6GM/c? (M being the
mass of the star)!® which then undergoes a pressure
reduction to a chosen fraction f, (with f,=0.01 or
0.4) of its equilibrium pressure; simultaneously, the
star is given an angular momentum distribution ap-
proximating rigid-body rotation. The total angular
momentum J of the star is measured by the dimen-
sionless parameter @ =J/(GM?/c). With the chosen
equation of state, all properties of the collapse scale in
an elementary fashion with M. Our initial configura-
tion has a central density 1.9x 1013(M/Mg) 2 g cm™—3
and radius 8.8 x 10°M/Me cm.

The nature of the collapse depends on the value of
a. For a < ag, with a near unity (a.;=1.2+£0.2
for f,=0.01 and for f,=0.4a.;=0.80£0.05), col-
lapse proceeds to a black hole. For a < 0.5 the col-
lapse proceeds in an almost spherically symmetric
fashion with only small rotational flattening of the star.
The meridional component of the velocity points very
nearly radially inwards throughout the collapse, and
the matter falls in without any shocks forming. After
a time of 25M for f,=0.01 (35M for f,=0.4) the
central lapse drops to below 10710 and in the region
r < 2M, the lapse very quickly becomes and remains
below 10~ 10 indicating black-hole formation.2’ During
this time the central proper density grows by a factor
of 75 for f,=0.01 (15 for f,=0.4) until its value
freezes because of the collapse of the lapse, while
matter outside this frozen region continues to fall in.
For 0.5 < a < a;, the rotational effects on the col-
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FIG. 1. Comparison test for the wave form (Ref. 16)
from a spheroidal dust shell (mass u and at t =0 homogene-
ous with inner and outer polar radii 12M and 20M and ec-
centricity 0.55) infalling into a Schwarzchild black hole

(mass M >> u). The amplitude is only 1/10 that from a
test particle (Ref. 17).

lapsing matter become noticeable. The collapsing con-
figuration becomes significantly nonspherical, showing
considerable flattening into the equator. The time for
the central lapse to collapse increases with a, during
which the central density increases similarly as for
smaller a. The star, having flattened towards the
equator, bounces vertically from the equator while
continuing to collapse inwards. For f,=0.01, the
lapse collapses and freezes the star while it is highly
flattened. For f,=0.4 the lapse collapses later, and
the star is able to become more spherical again before
freezing. In spite of the flattening of the star, the col-
lapsed region with lapse < 107! remains nearly
spherical, its radius decreasing with increasing a (e.g.,
for a =0.9 it is 1.4M). When a > a_;, rotational ef-
fects dominate and prevent black-hole formation (the
lapse now remaining near unity everywhere).2! Ma-
terial near the equator starts to expand radially out-
wards (apart from the very inner region, for the small-
er a in this interval, which moves initially inwards).
Matter near the pole collapses towards the equator but
moves radially outwards while doing so. These
motions are eventually halted and turned around as
the star bounces. The star then oscillates about a flat-
tened equilibrium structure. The highly rotating
configurations show maxima in their coordinate densi-
ty somewhat displaced from the origin (and in the
equatorial plane).

The gravitational emission for the collapse is moni-
tored at the outer edge of the grid (50M from the ori-
gin) as well as at smaller radii. Figures 2(a) and 2(b)
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FIG. 2. (a) Plus and (b) cross mode wave forms for the collapse to a black hole by stars (f, =0.01) of various angular mo-

menta a.

show the transverse traceless amplitudes of the two
polarization modes 4, and #, for black-hole collapse
(a < agqy) for f,=0.01. The general shape of the
wave form remains much the same over the entire
range?? of a while the amplitude increases with a.
Results for f, =0.4 are similar, although later in re-
tarded time. The maximum plus-mode amplitude is
closely

[(r/M)h 4 | pax=min{0.1a%, 4 ) (0< a < agyy),

where A . =0.06 for f, =0.01, and A4 ,x=0.025 for
J»=0.4. The wave form is remarkably similar to that
of a single particle falling into a black hole,!” the am-
plitude for our case only being smaller and opposite in
sign. The decrease in amplitude from the single-
particle case is due to phase cancellation of emission
from the extended regions of the star (seen also in re-
cent perturbation studies).!>1%23 The relative minus
sign occurs because the equatorially flattened collaps-
ing configuration is crudely approximating to a collaps-
ing sphere (which does not radiate) minus material
near the pole. Our results are closely similar also to
those of perturbation studies of collapsing stars.!6-24
As in the single-particle case, most of the
gravitational-wave emission arises at a retarded time
when the dimensions of the star are between 2M and
4M and the emission is then red shifted while prop-
agating to large distances. The wave forms settle to
nearly their asymptotic forms at fairly small radii
(r —25M) as they propagate outwards. As expected
for axisymmetric configurations, the amplitude of the
cross polarization mode is always < 0.2 that of the
even mode. The emission in the plus mode is dom-
inantly quadrupolar with the expected sin’ angular
dependence. (The smaller-amplitude cross mode has
the expected cos@sin’ angular dependence.) The
power spectrum of these wave forms peaks in the

frequency range (0.035-0.08) (GM/c?) ~'Hz li.e., (7-
16) (M /Mo) ~! kHz; wavelengths of 12M-28M].

The energy emitted in this gravitational radiation
(Fig. 3) clearly indicates a very low efficiency for this
emission. Less than 7x 10~% of the asymptotic mass is
converted into gravitational radiation. (The numerical
result for a =0 is AE/Mc?=10"8 thus demonstrating
the numerical accuracy of the code.) The energy emit-
ted scales as a* for low a (found also in perturbation
and other approximate studies!>-1%24)  and levels off
as a nears a.;;. These results closely follow

AE/Mc?=min{1.4x1073a% e,,,) (0<a <agy),
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FIG. 3. Energy of the gravitational-wave emission from
the collapse to a black hole by stars (squares f, = 0.01; trian-
gles f, =0.4) of various angular momenta a. Solid line fits
the a* scaling; dashed lines mark €max.
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where €., =6x10"* for £, =0.01 and €y, =1x10"*
for f, =0.4. In all cases, the energy of emission in the
plus mode exceeds by at least a factor of 10 that in the
cross mode.

For a. i <a <2, when no black hole forms, the
wave form has the form of several sharp peaks about
the retarded time of stellar bounce, superimposed on a
slowly varying envelope. The corresponding energy
radiated is AE/Mc?*=10"3 for f,=0.01 (10~* for
f,=0.4). However, unlike the black-hole results,
these results depend significantly on the particular
choice of initial model used.

In conclusion, we have shown the efficiency of
gravitational-wave emission from the collapse of an
axisymmetric rotating polytrope to a black hole to be
very low (AE/Mc? < 7%x1074%). Our h, wave forms
are well fitted by a combination of the lowest two,
[ =2, quasinormal modes of Schwarzschild.?® This, to-
gether with their similarity in shape to previous ap-
proximate computations,'®!”2* indicates the impor-
tance of black-hole mode excitation in determining the
wave form. The insensitivity of the wave form to a re-
flects the weak dependence on a of the axisymmetric
Kerr quasinormal-mode frequencies.?’> The wave-form
amplitudes are determined by the details of the col-
lapse. Results for realistic collapse to a black hole can
be expected to be substantially similar provided axi-
symmetry is maintained. Nonaxisymmetric collapse
may well be expected to increase this emission. Such a
three-dimensional computation is, however, beyond
the practical capabilities of present-day computers.
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