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Helical instabilities in an electron-hole plasma in Ge in parallel dc electric and magnetic fields are
known to exhibit chaotic behavior. By fabricating probe contacts along the length of a Ge crystal
we study the spatial structure of these instabilities, finding two types: (i) spatially coherent and
temporally chaotic helical density waves characterized by strange attractors of fractal dimension
d —3, and (ii) beyond the onset of spatial incoherence, instabilities of indeterminately large fractal
dimension d ) 8. A transition between these two types of behavior is observed as the applied fields
are increased.

PACS numbers: 72.30.+q, 05.45.+b, 47.25.—c, 71.35.+z

It is by now well established that the onset of tur-
bulence in a wide range of physical systems can be
characterized by temporal chaos. ' That is, the evolu-
tion of these systems corresponds to motion in phase
space along trajectories which are confined to a strange
(fractal) attractor. 2 However, the relationship between
low-dimensional chaos and spatial complexity is less
we11 understood. Both experimental and theoretical
continuum systems have been shown to exhibit tem-
porally chaotic, spatially coherent behavior. However,
there is as yet no clear experimental data on a system
in which the breakup of spatial order can be character-
ized by low-dimensional chaotic dynamics. In this
Letter we present results of experiments on the spatial
and temporal dynamics of chaotic instabilities in an
electron-hole (eh) plasma in Ge.

Spontaneous current oscillations in an eh plasma in
parallel dc electric and magnetic fields are known to be
the result of an unstable, traveling, screw-shaped heli-
cal density wave. Held, Jeffries, and Hailer have
found that when this instability is strongly excited
by an increasing electric field, it will undergo both
period-doubling and quasiperiodic transitions to low-
dimensional temporal chaos. Experimentally, we vary
the applied dc fields and record the dynamical vari-
ables I(t), the total current passing through the sam-
ple, and V (t), the voltage across it.

Given that these eh plasma instabilities do indeed
exhibit chaos, we turn our attention to the question of
spatial coherence within the instabilities. In particular,
we would like to determine whether the observed
chaotic states correspond to a temporally chaotic yet
still spatially coherent helical plasma density wave or
whether the onset of temporal chaos also corresponds
to a breakup of spatial order within the density wave.
By placing probe contacts along the length of our sam-
ples, we are able to monitor the local variations in
plasma density. We have found two distinct types of
behavior: (i) an essentially spatially coherent and tem-
porally chaotic plasma density wave characterized by

an attractor of fractal dimension d —3, and (ii) a spa-
tially incoherent wave with an unmeasurably large
fractal dimension d & 8. Further, as the applied elec-
tric field Eo is increased, we observe a transition
between these two states —characterized by a partial
loss of spatial order and a jump in fractal dimension.
While the increase in fractal dimension from d —3 to
d ) 8 is somewhat abrupt (AEo/Eo —0.05), the
breakup of spatial order occurs gradually. It is physi-
cally reasonable that the onset of spatial incoherence
(which increases the number of available degrees of
freedom) would result in an increased fractal dimen-
sion. However, we cannot firmly establish that the on-
set of spatial disorder is coincident with the observed
jump in fractal dimension; the possibility that these
two events occur at comparable applied fields and yet
are not directly related cannot be completely excluded.

Our experiments are performed on a 1 x 1 & 10-mm
sample cut from a large single crystal of n-type Ge with
a net donor concentration ND —3.7 x 10' cm . A
lithium-diffused n+ contact (electron injecting) and
a boron-implanted p+ contact (hole injecting) were
formed on opposite 1 x 1-mm ends. Phosphor-im-
planted n+ contacts were formed on two opposite
1 & 10-mm faces. Using photolithography, we etched
onto these two faces a pattern of eight pairs of con-
tacts, 0.5 mm wide and spaced by 1 mm along the
length of the sample. The voltage V, (t) across a pair
of these contacts is a measure of the local variation in
the plasma density. The sample was lapped, etched,
and then stored in dry air for 72 h to allow the surfaces
to passivate.

When taking data, the sample is cooled to 77 K in
liquid N2 and connected in series with a 100-A resis-
tance and a variable dc voltage, which both generates
the eh plasma via double injection and creates the dc
field Eo. The applied voltage Vz„ the applied magnet-
ic field Bo, and the angle between the two fields 0
comprise our control parameters; typically 8=0+ 3 .
In practice, we fix Bo and 0 and sweep Vz„while
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recording the dynamical variables I (t), V (t), and
V; (t) which characterize the plasma behavior.

In different regions of parameter space (Vd„Bo, 0)
different types of transitions to turbulence are ob-
served. For our system we make the operational def-
inition that a transition to "weak" turbulence is one in
which the transition from periodicity to chaos is fol-
lowed by a transition back to periodicity as Vd, is in-
creased further. All such transitions that we have ob-
served occur over a small range (i.e. , —1 V) of Vd„
and in all such chaotic states there exists at least one
fundamental peak which stands out clearly above the
broad-band "noise" level of the power spectrum. The
scenarios previously reported, 7 period-doubling and
quasiperiodic transitions to chaos, were in parameter-
space regions corresponding to transitions to weak tur-
bulence.

The transition to weak turbulence which we consider
here (taken with Bo——11.15 kG) is periodic at Vd,
= 5.50 V, quasiperiodic at Vd, ——5.59 V, and chaotic at
Vd, = 5.71 V. The power spectra and return maps
(which are topologically equivalent to Poincare sec-
tionss) for these three states are shown in Fig. 1. The
structure within the return map at Vd, ——5.71 V strong-
ly infers that the system is in a low-dimensional chaot-
ic regime, and the following calculations of the fractal
dimension confirm this.

We find the fractal dimension d of our plasma insta-

40—

bility to be 1, 2, and 2.7 for the above periodic, quasi-
periodic, and chaotic states, respectively. We use the
following procedure to measure fractal dimensions of
our system: We begin by recording a data set of iV
values of the current at uniformly spaced time inter-
vals [i.e., I„=I(t+nr), n = 1, . . . , N] using a fast
12-bit analog-to-digital converter and an I SI-11/23
computer. From the data set (I,,I2, . . . , Itv) we con-
struct N —D + 1 vectors G„= (I„,I„+,, . . . , I„+D, )
in a D-dimensional phase space; D is referred to as the
embedding dimension of the reconstructed phase
space G. s Next, we compute the number of points
on the attractor, N(e), which are contained in a D
dimensional hypersphere of radius e centered on a ran-
domly selected vector G . One expects N(e) to scale
as &", where d is the fractal dimension of the attractor.
This is repeated for hyperspheres centered on many
different vectors G, and a plot of the average
logN(e) vs e is expected to have a slope d. This pro-
cedure is carried out for consecutive values D = 2,
3, 4, . . . , and an increasing number of data points X
until the slope has converged. This is done to ensure
that the embedding dimension is sufficiently large'
(important if the dimension of the phase space is not
known) and to discriminate against high-dimensional
stochastic noise, not of deterministic origin.

To determine whether or not a weakly turbulent
state is spatially coherent, we compare fluctuations in
plasma density at different points along the sample.
Quantitatively, we calculate a spatial correlation func-
tion, C (r), defined as

(a)

(c)

In

20—

J,

40—

20—
„LJ. . . sl ii. ll J, IJI Ji

~ el

m 40—

0 200 400
frequency (kHz)

where V, (t) and VJ (t) are the voltages across two pairs
of contacts separated by a distance r, 7 is the sampling
interval, and N is a number large enough that C(r)
has converged, typically 20000. We find that C (r) is
independent of 7.

For the periodic parameters above, the correlation
function C(r) for different spacings r between the
pairs of probe contacts is plotted in Fig. 2(a). For each
pair of contacts, the voltage difference V, (t) is period-
ic. By noting the phase shift between pairs of probes
as a function of distance, we estimate that the spatial
wavelength is X = 4.9 mm. The theoretical correlation
function for a traveling wave,

1/2
f% T

5 (r) = —
Jl sin(tdt )sin(t0t —2vrr/))dt.

T

FIG. 1. Poincare sections, I„vs I„+i (where (I„) is the set
of local current maxima), and power spectra of the total
current I(t) at Bo= 11.15 kG with increasing Vd, . (a) 5.50
V, periodic at f0=147 kHz. (h) 5.59 V, quasiperiodic. (c)
5.71 V, chaotic. I(t) is ac coupled and filtered to remove
harmonic distortion.

is also shown in Fig. 2(a); the periodic data points lie
close to the theoretical curve. We believe that the ob-
served deviations from theory are due to the harmonic
components of the density wave, 2ja, 3fo, etc. (which

are seen experimentally [Fig. 1(a)] but are not includ-
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FIG. 2. (a) Comparison of measured values (squares) of
the spatial correlation function, C(r), Eq. (1), with the
theoretical correlation function, S (r), Eq. (2), computed for
X=4.9 mm (solid line). Data were taken for the periodic
state at Bp=11.15 kG, &d =5.50 V with use of voltages
from pairs of side probes separated by distance r. (b) Nor-
malized comparison of measured values of spatial correla-
tion function C(r) for three data sets at BO=11.15 kG:
squares, periodic, Vd, = 5.50 V; triangles, quasiperiodic,
Vd, = 5.59 V; circles, chaotic, Vd, = 5.71 V.
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ed in Eq. (2)} and, possibly, to variations in probe sen-
sitivity as well. Thus we conclude that the periodic os-
cillations are spatially coherent —not surprising, and
consistent with previous experimental work. " In
Fig. 2(b) we plot experimental correlation functions
C(r) for the quasiperiodic ( Vd, =5.59 V) and chaotic
(Vd, =5.71 V) states. In these plots, C(r) for the
periodic data has been normalized to unity at each dis-
tance r, and the quasiperiodic and chaotic data have
been scaled accordingly. We find that the quasiperiod-
ic and chaotic states both have correlation functions
which approximately follow the periodic case. There-
fore, we conclude that this weakly turbulent instability
exhibits temporal chaotic behavior while remaining
essentially a spatially coherent plasma density wave.

With sufficiently large applied electric and magnetic
fields, we find that we can drive the plasma into a tur-
bulent state from which it will not become periodic
again as Vd, is increased further. Instead, all of the
frequency peaks in the power spectrum merge into a
single, broad, noiselike band. We classify this as a
transition to "strong" turbulence. Such a transition is
shown in Fig. 3. At Vd, ——10.4 V, I(t) is simply
periodic at fo ——321 kHz, with higher harmonics
present as well [Fig. 3(a)]. At Vd, = 11.6 V, I(t) is
quasiperiodic and at Vd, ——12.1 V (not shown), the on-
set of broadband "noise" can be observed. At Vd,
=13.8 V [Fig. 3(b)], only a few of the peaks can be
seen above the noise, and when Vd, =21.8 V [Fig.
3(c)], only a very broad peak remains.

We find that this transition to strong turbulence is
characterized by a partial loss of spatial coherence. In
the right-hand column of Fig. 3, we plot the voltage
traces across two pairs of probe contacts which are
separated by r =4 mm, for Vd, =10.4, 13.8, and 21.8
V. In the periodic case, the wave is spatially coherent
with a wavelength of approximately 8 mm (i.e., a 4-

FIG. 3. Measured power spectra of I(t) and measured
voltages for two pairs of probe contacts separated by r = 4
mm: V3(t) and V7(t) correspond to probe pairs located
3 and 7 mm away from the p+ contact, respectively. Bp
=11.15 kG. (a) Vd, =10.4 V, periodic at f0=321 kHz. (b)
Vd, = 13.8 V. (c) Vd, ——21.8 V.

mm separation corresponds to a 180' phase shift). At
Vd, = 13.8 V we are just beyond the onset of the break-
up of spatial order —the basic oscillatory pattern and
the 180' phase shift are approximately maintained
between the two traces, but changes in the shapes and
spacings of the peaks can also be observed. For
Vd, = 21.8 V, the wavelike structure of the traces as
well as the readily observable spatial correlation are no
longer present. We have not found a correlation func-
tion of analytic form which fits the data, in contrast to
the case of Fig. 2.

We would like to determine whether this breakup of
spatial order can be characterized by chaotic dynamics:
Do the spatially uncorrelated states still correspond to
motion in phase space along a low-dimensional strange
attractor? We have as yet been unable to answer this
question definitively. Just prior to the breakup of spa-
tial coherence, Vd, = 12.1 V, the total current 1(t) of
the system is characterized by a low-dimensional at-
tractor; measurements of the fractal dimension yield
d =2.5 [Fig. 4(a)]. However, just after the onset of
spatial disordering, Vd, = 12.9 V, the fractal dimension
has increased to the point where we cannot calculate
its value —we can only set a lower limit: d & 8. This
is shown in Fig. 4(b) where the slope has not con-
verged with respect to either embedding dimension D
or number of data points N. Figure 4(b) was taken
with N = 884 000 and required 50 h of central-pro-
cessing-unit time on a Sun microcomputer. Fractal-
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FIG. 4. Plots of 1og2%( e) vs log2e used to compute frac-
tal dimension d at 80=11.15 kG. (a) Vd, ——12.1 V, lV

=490000 data points; the circles and triangles refer to
embedding dimensions of 4 and 8, respectively. Slopes have
converged to 2.5 with respect to both D and N (b) V. d,
=12.9 V, W = 884000; inverted triangles, circles, squares,
and triangles refer to D =6, 10, 14, and 18, respectively.
Slopes have not converged with respect to either D or W.

For D = 18, the slope is 8.7.

dimension calculations based on time series taken
across different pairs of probe contacts V, (t) yield the
same results as those based on total current I(t), for
both spatially coherent and incoherent states. Further,
we find that for fixed values of our applied fields, the
power spectrum measured across a pair of probe con-
tacts ) V, (to) i is essentially identical to the power
spectrum of the total current iI(co) i . This suggests
that the spatial incoherence may be due to the disper-
sive nature of the eh plasma.

This difficulty in calculating large fractal dimensions
is a problem incurred with very chaotic systems. ' The
number of data points required for convergence in-
creases exponentially with the fractal dimension of the
system. At present, although we know that our system
experiences a large jump in dimensionality at the onset
of spatial incoherence, we have not yet determined
whether this onset is characterized by chaotic dynamics
of an attractor of fractal dimension many orders of
magnitude smaller than the number of degrees of free-
dom of the particles in the system ( —10'o). Other
approaches for quantitatively characterizing very

chaotic states (say, d ) 10) will need to be developed
before this intriguing question can be answered.

We wish to thank E. E. Hailer and the members of
his laboratory for the Ge samples and assistance in the
sample preparation. Also, we thank J. D. Farmer and
J. P. Crutchfield for helpful discussions. This work
was supported by the Director, Office of Energy
Research, Office of Basic Energy Science, Materials
Sciences Division of the U.S. Department of Energy
under Contract No. DE-AC03-76SF00098.

tFor example, see H. L. Swinney, Physica (Utrecht) 7D, 3
(1983); see also The Physics of Chaos and Related Prob-
lems, edited by S. Lundqvist, Phys. Scr. T9 (1985).

2D. Ruelle and F. Takens, Commun. Math. Phys. 20, 167
(1971);E. Ott, Rev. Mod. Phys. 53, 655 (1981).

3S. Ciliberto and J. P. Gollub, Phys. Rev. Lett. 52, 922
(1984).

4P. S. Lomdahl, A. R. Bishop, O. H. Olsen, and J. C. Eil-
beck, Bull. Am. Phys. Soc. 30, 421 (1985).

~I. L. Ivanov and S. M. Ryvkin, Zh. Tekh. Fiz. 28, 774
(1958) [Sov. Phys. Tech. Phys. 3, 722 (1958)]; M. Glicks-
man, Phys. Rev. 124, 1655 (1961).

6C. E. Hurwitz and A. L. Mc%horter, Phys. Rev. 134,
A1033 (1964).

7G. A. Held, C. Jeffries, and E. E. Hailer, Phys. Rev. Lett.
52, 1037 (1984), and in Proceedings of the Seventeenth Inter
national Conference of Physics Semiconductors, San Francisco,
1984, edited by D. J. Chadi and W. A. Harrison (Springer-
Verlag, New York, 1985), p. 1289.

8N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S.
Shaw, Phys. Rev. Lett. 45, 712 (1980).

9This is the method used by A. Brandstater et a/. , Phys.
Rev. Lett. 51, 1442 (1983); see also P. Grassberger and
I. Procaccia, Phys. Rev. Lett. 50, 346 (1983).

OFor the embedding theorem to be applicable, it is re-
quired that D ~ 2d + 1; see Ref. 1.

T. Misawa and T. Yamada, Jpn. J. Appl. Phys. 2, 19
(1963).

H. S. Greenside, A. Wolf, J. Swift, and T. Pignataro,
Phys. Rev. A 25, 3453 (1982).

890


