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We show that a quaternionic quantum field theory can be formulated when the numbers of bo-
sonic and fermionic degrees of freedom are equal and the fermions, as well as the bosons, obey a
second-order wave equation. The theory is initially defined in terms of a quaternion-imaginary
Lagrangean using the Feynman sum over histories. A Schrodinger equation can be derived from
the functional integral, which identifies the quaternion-imaginary quantum Hamiltonian. Con-
versely, the transformation theory based on this Hamiltonian can be used to rederive the
functional-integral formulation.

PACS numbers: 11.10.Ef, 03.65.Ca

Ever since the classic work of Birkhoff and Von Neumann' on the foundations of quantum theory, there has
been interest in the possibility of constructing a quaternionic generalization of complex quantum mechanics. Over
the years a number of relevant mathematical and kinematical results have been obtained, 2 but the central problem
of finding a viable dynamics for quaternionic quantum theory has remained unsolved. I now report progress on
this problem.

My approach is based on the sum-over-histories method of Feynman, and my basic kinematic tool is a remark-
able formula which I recently discovered4 for an oscillatory quaternionic Gaussian integral with equal numbers of
bosonic and fermionic integration variables,

M
lim J d$'dP' (4m ) ™exp(—@A @—QBQ+ u@ —@u+ (Q+ Q(+ g —e@@)a~0; '1

=det Bdet '(A A)exp( —uA 'u+(B 'g+g ).

The notation is as follows: e1 2 3 are quaternionic imaginary units satisfying e, e~ = —5~~ + E'gpgeg, with the conjuga-
tion operation e, = —e, ; @ and u are column vectors containing M real quaternions, and P and g are column vec-
tors containing M real Grassmann quaternions (i.e. , the ith components of @ and P are @'=@0+(fl,e~,
Pt —Pot+/, 'e„with @o, real and Pot, real Grassmann), B=B —= B and A = —A are MXMquaternionic ma-
trices, g = —g is a fixed imaginary quaternion, the integration measure is defined by d@'= d@o d(j)I d@2 d$3,
dQt= dpo dQI dp2 df3, and det denotes the Dyson-Moore2 determinant. Apart from the infinitesimal convergence
factor exp( —m)@), the exponents on the left- and right-hand sides of Eq. (1) are quaternion imaginary. The ex-
ponential source dependence on the right is special to the case when the numbers of bosonic and fermionic in-
tegration variables are the same, and is an essential ingredient of the construction which follows.

The fundamental postulate, generalizing Dirac's observation6 in the complex case, is that the quantum mechani-
cal transformation function for an infinitesimal time interval 6 t = t, + &

—t, has the form

(2)

with L a quaternion-imaginary Lagrangean, L = Lt et+ L2e2+ L3e3 (analogous to iL in the complex case). The ar-
guments of L are to be evaluated in accordance with the trapezoidal rule at the midpoint of the interval. Com-
pounding N infinitesimal transformations, we get for finite time evolution

( [@Ã~ Plv) tÃ I [@o~ POI to

W —1 M

I J IJJt 0@,'dpj' C 'exp[6, tL(N —,')]C 'exp[htL(N ——', )] C 'exp[A, tL—( —,
' )], (3)

j=1 i =1

in an abbreviated notation where the exponent in Eq. (2) would be written as AtL(j+ —, ). In passing to the con-
tinuum limit, we must take into account the fact that the infinitesimal phases in Eq. (3) do not commute, and
hence the product in Eq. (3) is not the exponential of the Riemann sum of exponents, as it is in the complex case.
Formally, we can accomplish this by giving the quaternion units e, a time label, e, e, (t), and defining a time-
ordering operation T as one which orders the e, s with the later time on the left, giving the functional integral for-
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mula7

,

+ N

& (4N, AN), tN I (@0,$0), tp) = const x „d[qb] d [p ] T exp J d te, ( t) L, (t) . (4)

This construction guarantees that the transformation functions satisfy the quantum-mechanical compos1t1on law
(the principle of superposition of wave amplitudes),

t M

& (4N PN) tNl (40 Po) to) ]I,[g d9 I d Pl & (9 N AN) tN l (4t It).tt) & (4t At) tl 'A&o. 40) to)

for any arbitrary intermediate time tt.
At this point let us assume a specific functional form for 1.,

with

M
L.;.= X ( 4'e34'—+ 0'0—'), (7)

as suggested by the choice 2 = e3, 8 = 1 in Eq. (1). The use of the quaternion unit e3 in the first term of Eq. (7)
is arbitrary; by the gauge transformation @' q@' with q a constant quaternion with qq = 1, which is4 an invariance
of the integration measure d$, e3 can be converted to the general quaternion imaginary unit qe3q. Hence, Eq. (7)
is consistent with the principle of quaternion covariance enunciated by Finkelstein et al. , which states that quater-
nionic quantum mechanics should not pick out a preferred quaternionic frame. (This would not be the case had
we instead used e3@@to get a quaternion-imaginary quantity, since the imaginary unit e3 would then be unaffected
by gauge transformations of @.) The fermion kinetic term in Eq. (7) is unconventional in that it is second order in
time derivatives (which need nots lead to difficulties. ) The question of whether the results of this Letter can be
extended to first-order fermion actions will be studied elsewhere. Since a Grassmann quaternion satisfies $4=0
(as contrasted with $2=0 for a Grassmann complex number Q), we expect quaternionic fermions to obey an un-
conventional statistics.

Let us now use the above formalism to derive the Schrodinger equation satisfied by the wave function

According to Eqs. (2)—(5), we have

M
+((@ 1t) t+~t) = J.. .J"d@od&0 &(4, 4), t+~tl(@p 1t0) t& &(@0.40), tl+&

i=1
M

J d@0 dpi' C ' exp[A tL ((@1/2, $1/2, $1/2, $1/2), t+ b, t/2) ]9'( (@0,Qp), t),

with

+I/2 2 (4 +40) ~ 01 2 /2 ( 0 + PO) 41/2 (4 40)/~ t 01 2 /( 0 40)/~ t. (10)

Making the change of variables @0
——@'+ (2b t )'/ q', po

——1tl'+ (2b, t ) / (', substituting Eqs. (6) and (7), performing
a Taylor expansion of W on left and right, and dropping terms of order (At ) /2 and higher, we get (with indices a, b
summed from 0 to 3)

e ((y, y), t)+at dq ((p, y), t)/Bt
M

j J1 dq'd(' C 'exp X(7l'e3q'+('(') —b, tV((@,p), t)
i=1

I+A, t( ddoin t, (7)+At X q,',. hatt,
. +(,',. (t, , +((@,Q), t)8 g 8 1 rl j 8

9@ dgbb Bp BQ&~

By comparison to Eq. (1), it is now clear that the normalization constant should be chosen' as C = (4m )M, and
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the unit term in the Taylor expansion on the right gives

exp[ —ArV({p, p},r)] II({@,p},r) = [I —ArV({@,p},r)]+({p,p), r). (12)

If we eliminate all terms odd in q,' and (~b, which integrate to zero, and use Eq. (1) to integrate out M —1 degrees
of freedom, the remainder of the right-hand side of Eq. (11) takes the form

r

Ar I.~ X . ,
—I.,g . +({@,y},&),

B@,' B@&;BQ,' BQ/,

(13)
lb=„dvl d((4m).'q, qbexp(qe3q+((), I b=„dq d((47r ) '(, (q exp(q e3g+(().

The integrals in Eq. (13) can be evaluated by the techniques of Ref. 4, giving after some algebra the Schrodinger
equation

B+({@,y},t)/Br = —H+({@,y},r),
with the H the quaternion-imaginary Hamiltonian (analogous to iHin the complex case)

H = H„,„({B/B@,BIB'})+V({y,y},r), H„,„=———X (D, , e,D, , +D, ,D, ,),
i= 1

(15)
D& —= B/B@o+ e& B/B@&+ e2 B/B@2+ e3 B/B@3, D~ —= B/Byo+ et B/By, + e2 B/BQ2+ e3 B/B p3.

As verification that Eqs. (1)—(15) define a consistent quantum-mechanical scheme, let us run the above deriva-
tion in reverse, and derive the functional integration formulation of Eqs. (1)—(7) from the transformation theory
based on the Hamiltonian H We first note that the argument leading to Eq. (12) tells us that for any smooth func-
tion fwe have

M

J dq'd(' (4m )™expX(Yl'e3q'+('(') —AtV f({(2At)' q, (2At)' (})

=exp( —AtV) f({0,0})+A,t&& ( V-independent terms)+ 0((At)2)
M

dq'dg' (4m ) ™expX(q'e3q'+('(') exp( —AtV) f({(2At) g, (2At)' 2(}),
i=1 i

and so within a functional integral we have the equivalence

exp(AtLk;„—AtV) exp(AtL„;„) exp( —AtV).

Applying the Trotter product formula" to the finite-time evolution operator exp( —Ht) we get

exp( —Ht) = {exp[—(Hk;„+ V) t/N]}~= [exp( —H„;„t/N)exp( —Vr/N) + O(1/N2) ]~,

and so taking t/N = A r we must prove that

( {@,y},t {exp( —A rHk;„) exp( —A r V) { {@',p'},r) = (4m 2) ™exp(AtLk;„)exp( —A t V). (i9)
Without loss of generality' the coordinate eigenstates

~
{$',P'},t) can be taken to be quaternion real,

e. l {4',y'},r) =
I
{@',y'},t) e; they are then eigenstates of V and exp( —AtV) can be moved outside the ket and

factored away. We can now use translation invariance to set {@',P'} = {0,0},and so we must prove

( {$,Q},t ~exp( —AtHk;„) ~ {0,0},t) = (47r ) ™expX (@'e3$'+P'P')/2At . (20)

We do this by writing the left-hand side of Eq. (20) in the differential operator form

exp [ —A rH„;„({B/B@,B/By} ) ] ( {@,y},r ~ {0,0},r) .

The matrix element in Eq. (21) is just the 5 function

({@,e},rl {o,0},r) =&(@,q ) = J J ~(@o)5(@l)~(@z)~(43)foA&4243.
i=1

(21)

(22)
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which by use of Eq. (I) with A = ae3, 8 = b, a, b 0 can be shown to have the integral representation

M
~(@,ti ) = „du'dg' (27r) '~coshe,

M
4 = —X (@'u' —u'@'+ y'('+ g'q '). (23)

(24)

Substituting the power-series expansion of Eq. (23) into Eq. (21) and commuting the differential operator H„;„
through to the right gives

((@,y), tlexp( —~tH„,„)~)0, 0), t)
1 2)i

du'dg' (2n ) ~ X 4 —b t H;„, , 4 + O((b, t)')
„=o (2tt)I

A long and complicated algebraic calculation now shows that the integral in Eq. (24) reduces to

M M

J du'd(' (2m) ™exp— At/ (—u'e3u'+('g')+C, (2S)
i=1 i=1

t

which by a final application of Eq. (1) yields the right-hand side of Eq. (20).
In conclusion, we emphasize that since the number of degrees of freedom M can be taken arbitrarily large, the

formalism constructed above applies to the field-theory (M ~) limit. Full details of the calculations outlined
above, and a discussion of many related topics, will be published elsewhere.

The author wishes to thank C. N. Yang for stimulating conversation about quaternionic quantum theory several
years ago. This work was supported by the U.S. Department of Energy under Grant No. DE-AC02-76ER02220.

tG. Birkhoff and J. Von Neumann, Ann. Math. 37, 823 (1936).
D. Finkelstein, J. M. Jauch, S. Schimonovich, and D. Speiser, J. Math. Phys. 3, 207 (1962), and 4, 788 (1963); D. Finkel-

stein, J. M. Jauch, and D. Speiser, in Logico Algebraic -Approach to Quantum Mechanics 11, edited by C. Hooker (D. Reidel, Dor-
drecht, 1959);F. J. Dyson, Helv. Phys. Acta 45, 289 (1972); L. P. Horwitz and L. C. Beidenharn, to be published.

3R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948).
4S. L. Adler, "Quaternionic Gaussian Multiple Integrals, " in "Quantum Field Theory and Quantum Statistics: Essays in

Honor of the 60th Birthday of E.S. Fradkin, " edited by I. A. Batalin, C. J. Isham, and G. A. Vilkovisky (Hilger, Bristol, Eng-
land, to be published).

5These definitions differ by numerical factors from those of Ref. 4.
6P. A. M. Dirac, Phys. Z. Sowjetunion, 3, 26 (1933).
The T ordering can be formally eliminated by the device of replacing the quaternions by Pauli matrices contracted with auxi-

liary complex Grassmann variables, as discussed by S. Samuel, J. Phys. Phys. 19, 1438 (1978).
A. Pais and G. E. Uhlenbeck, Phys. Rev. 79, 145 (1950). I wish to thank A. Strominger for bringing this reference to my

attention.
S. L. Adler, in preparation.

1 The AI. factors arising from the boson and fermion integrations cancel, resulting in a normalization which is nonsingular as
At 0.

t tE. Nelson, J. Math. Phys. 5, 332 (1964).
12Horwitz and Biedenharn, Ref. 2.

786


