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Symmetry Breaking in the Lattice Abelian Higgs Model
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A new gauge-invariant order parameter is introduced for the Abelian Higgs model and used to
prove the existence of a phase transition for the lattice theory in three or more dimensions. In Lan-
dau gauge this order parameter is the limit of (@(x)@(y) ) as

l
x —y l

PACS numbers: 11.15.Ha, 11.15.Ex

field. For a range of parameters inside the Higgs
phase, we prove that this order parameter is nonzero.
An easy argument shows that the order parameter is
zero for a range of parameters inside the QED phase.

The scalar field is written as @(x)= r (x) e'~t" . For
convenience we fix r(x) to be a, so that

S= —,
' X ~B„A„(x)—r)„A„(x)I'+(2n) 'X~8„A„(x)~'—a'Xc so[8 e(x) —eA (x)],

p, P,X jX pX jXpX

where A~(x) 6 ( —~, ~) and H(x) C [0, 27r) We.
have included the standard gauge-fixing term; a = 1 is ishes, so that G (x,y) is just @(x)@(y).
Feynman gauge, and n = 0 is Landau gauge. Our main result concerns (G(x,y) ), where the ex-

To investigate whether @(x) has LRO, a natural pectation is defined by the action S.
gauge-invariant observable to study is the lattice ver- Theorem J.—In d~3, for a sufficiently large and e
sion of the string @(x)exp[ief A dl]@(y). Howev- sufficiently small,

X
er, the expectation of this observable always decays
exponentially in ~x —y~ (see Frohlich, Morchio, and (G(x,y)) K & 0,
Strocchi5). Order parameters based on the behavior of where K is independent of x and y.this observable have been proposed by Bricmont and

By using a correlation inequality, we can shows thatFrohlich, and Fredenhagen and Marcu.
this result holds for a variable-length scalar field withAnother way to make the two-point function of the the double-well potential U(r) =A. (r —a ) for anyscalar field gauge invariant is to introduce a smeared

string as follows:
When e —0, Theorem 1 provides a new proof of

LRO for the classical X-I'model in d ~ 3; for earlier
proofs, see Frolich et al. 9 '

By a correlation inequality, " ( G (xy) ) for any
choice of e is bounded above by the two-point function
of the X- Y model at inverse temperature P = a2. Thus
( G (x,y) ) decays exponentially if a is sufficiently
small. This decay also holds if we use a single-well po-
tential for the scalar field. Therefore, the model has
a phase transition with order parameter 6
= lim~„~~ (G(xy)). This indicates that there is a
region of parameters for which $(x) has LRO in Lan-
dau gauge. %e do not prove that this phase transition
exactly coincides with the transition from a massless to
a massive photon.

Our other main result is the following:
Theorem 2.—In d ~ 3 for ae sufficiently large and e

G(x,y) =@(x)exp —ie XA (z)h (z) @(y),
p„Z

where h„ is the electric field generated by charges +1
at x and —1 at y,

h (z) =B„V(z—x) —B„V(z—y).

The potential V(z —w) is the kernel of ( —b, )
where 4 is the lattice Laplacian. Under a gauge
transformation 0 0+ X, A„A~+ e ' B„X, the
smeared string transforms as

ex'„(z)h~(z) e XA„(z)h„(z) + X(x) —X(y).

So G (x,y) is gauge invariant. In Landau gauge
(B„A„=O), the smeared string Q,A„(z)h„(z) van-

In space-time dimension d ~ 3 the Euclidean lattice
Abelian Higgs model is known to have two phases. In
the QED phase, the photon is massless, ' while in the
Higgs phase the photon acquires a mass. The stand-
ard explanation of mass generation begins by the as-
sumption that the U(1) symmetry is spontaneously
broken and that the scalar field acquires a nonzero vac-
uum expectation value. This explanation suggests that —,

' ~(D„@)(x) ~'= a'[I —cos[B e(x) —eA (x)]}.
the scalar field may have long-range order (LRO), as
in a ferromagnet. In this paper we introduce a new [The lattice has unit sPacing, and (B~f)(x)=f(x
gauge-invariant order parameter involving the scalar + e&) —f(x), where e~ is the pth unit vector. ] The

action is
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sufficiently small,

C 1
(G(xry)) G~+

! !d 2
+ &

! !d &
y

where G is the order parameter defined above and C
depends on a and e.

Theorem 2 says there are Goldstone bosons in our
theory when it is interpreted as a model in statistical

mechanics. However, this does not imply that there
are massless particles in the physical Hilbert space of
the corresponding quantum field theory.

The main ideas of our proof are sketched below. A
detailed proof will appear elsewhere. 8 The proof be-
gins by using the transformation of Balaban, Brydges,
Imbrie, and Jaffe3 to rewrite the noncompact model in
a compact form. This gives (G(xy)) = a Z(h)/

! Z(0), where

Z(h) = X„DA exp ——,
' X !B„A„(z)—B„A (z)+ v„„(z)!'+a gcos[eA (z)]

e
lf iMi &~Z p, ~Z

x exp —ie XA„(z)h~(z) —27ri X n„" (z) h„(z)
JM, Z P,Z

Each A„(z) is integrated from 0 to 2m/e. The sum is over closed, integer-valued two-forms v (in the usual nota-
tion, v is closed if du =0). n" is an integer-valued one-form chosen so that B~n„" —B„n„"= v„„(or dn" = v).

If e is small, the term a2cos[eA„(z) ] produces a mass ae for 2 (z), and nonzero v are strongly suppressed. So
to leading order in e,

Z(h) = J DA exp ——,
' X !rl A„(z) —B„A (z)! ——,

' a e XA~ (z) exp —ie XA~(z)h„(z) .
P, V, Z JM, Z

If a is large, the restriction on the range of integration of A can be neglected. The integral is now Gaussian and
can be computed. This gives

Z(0) =exp ——'e' X h (z)C, (z —z')h, (z') ~exp —(2a') 'X!h (z)!', (I)
P, 1M, Z, Z P&Z

since as an operator C» (ae) 2. The electric field !B„v(r)!is asymptotically r "+', so that $„,!h (z)!2 is
bounded uniformly in x and y when d ~ 3.

To make this bound rigorous, we perform a cluster expansion for Z(h). In Ref. 3 an expansion was developed
about the Gaussian measure with covariance C Our expansion is about the product measure
exp[ a2 g, cos[eA (z) ] ]DR. For this technically simpler expansion to converge, we need (ae)2 to be large, and e
small. Correlation inequalities" extend the result to the range of parameters in Theorem 1. Presumably, the ex-
pansion of Ref. 3 could be adapted to enlarge the range of parameters for which Theorem 1 holds.

The massless decay of the truncated correlation (Theorem 2) can be easily seen from the approximation (1). In
this approximation

G = a2exp —e2 X t) V(z) C,(z —z')ri, V(z'),
I

P,P,Z, Z

since Vis translation invariant. Therefore,
r

(G(xy)) —G = G exp e2 X ri„V(z —x) C, (z —z )rl, V(z —y) —1 .
I

jtl, P,Z, Z

In d~3,

rl V(z —x) C, (z —z')r'l, V(z' —y) =
P PP Il

1 1

a'e' !x—y!' ''
and so

(G(x,y)) —G = G
l

a x —y"
The rigorous proof of this decay uses the cluster expansion, which also gives higher-order corrections.
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To summarize, we have found a gauge-invariant order parameter for the Higgs transition which indicates that
the standard picture of spontaneous symmetry breakdown is valid in Landau gauge. This property is not shared by
any other n gauge if 1~4; when n~0 the two-point function ($(x)P(y) ) decays to zero for d ~ 4 (Ref. 8).
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