
VOLUME 55 19 AUGUST 1985 +UMBER 8

Structure of Constrained Hamiltonian Systems and Becchi-Rouet-Stora Symmetry
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The structure of constrained Hamiltonian systems is investigated. The structure functions are
shown to obey remarkable identities which ensure the existence of the Becchi-Rouet-Stora sym-
metry for any gauge theory.
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Constrained Hamiltonian systems, whose systematic
study has been initiated by Dirac, provide an impor-
tant tool in the investigation of gauge theories. Not
only do they constitute an essential ingredient in the
justification of the Faddeev-Popov representation of
the path integral, 2 but, as it has been realized recently,
they also play a key role in the understanding of
anomalies. 3

It is the purpose of this Letter to point out that con-
strained Hamiltonian systems possess a rich structure,
characterized by "structure functions" obeying a
series of remarkable identities. This classical structure
has gone unnoticed so far because it is trivial for gauge
theories with a closed algebra. However, in the
"open" algebra case—to be defined more precisely
below —this structure displays all its facets. Because of
its relevance to the quantum theory, it seems accord-
ingly indispensable to get familiar with it.

At the bottom of the "ladder" of structure func-
tions, one finds the "zeroth-order structure func-
tions. " These are just the constraints themselves,
which will be denoted by @ (q,p ) = U to~ (q,p ). Here
(q', p;) are the canonical variables, which may include
the Lagrange multipliers and their (weakly zero) con-
jugate momenta, and which are taken to be commut-
ing for notationa1 simplicity.

The meaning of the zeroth-order structure functions
is well known: On the one hand, they restrict the clas-
sically available portion of phase space by the equa-
tions @ (q,p) =0. On the other hand, they are the
canonical generators of the gauge transformations.
For this latter reason, their actual form can be usually

guessed directly from the given gauge transformations
without an explicit knowledge of the Lagrangean. At
the quantum level, the constraint equations P ~ P) = 0
express the gauge invariance of the theory in the phys-
ical subspace. ' 4

Because the degeneracy of the Lagrangean is as-
sumed to be solely due to the gauge invariance, all the
constraints are first class, '

(1)

The constraint surface is accordingly invariant under
the gauge transformations. In (1), the functions
U~ ~~ = —U I' are, the "first-order structure func-
tions" (the factor —2 has been inserted for further
convenience). These functions may depend on the
canonical variables, in which case one says that the
gauge "algebra" is "open. " The commutator of two
gauge transformations generated by the constraints is
then a transformation of the same type only on the
constraint surface (this commutator involves indeed
the term [. . . , Ut&~" ]@„,which only vanishes weak-
ly).

In the Yang-Mills case, the first-order structure
functions are equal to the gauge-group structure con-
stants (up to the numerical factor ——,

' ). In gravity,
they reveal the structure of the surface deformation
"algebra. "5 More generally, they are related in a sim-
ple way to the variation of the Lagrange multipliers
under a gauge transformation, which relationship pro-
vides a means to compute them without the explicit
form of the constraints.

From the Jacobi identity for the Poisson brackets, it
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follows that g [[/, @&],@~]= 0, where one sums over
all cyclic permutations of (n, P, y ) . This implies,
when (1) is taken into account, that

{X([U(1)s ~ ]+2U (()) U(()s )}

Now, contrary to what is sometimes (wrongly) assert-
ed, it does not result from this identity that the coeffi-
cient of @() in (2) vanishes. Rather, one gets

[U(&)s @ ]+2U(()zU(I)a 2U(2)P~@

where the functions U(g(' (q,p) are antisymmetric in

(p, o-) and (o., P, y), and will be named "second-order
structure functions" [the subscript parentheses in (3)
denote, as usual, complete antisymmetrization].
Although these functions are easily seen to vanish for
Yang-Mills theories (as a result of the Jacobi identity
for the structure constants) and gravity, they are
nonzero in the generic case (e.g. , X = 1 supergravity7
and relativistic membrane, both without auxiliary
fields) and, hence, they cannot be neglected.

Since equations of the same type as (2),

=0,

will repeatedly appear in the sequel, it is worth discuss-
ing them briefly. These equations are local, algebraic,
and linear in both )(. and @ . Off the constraint sur-
face, one easily sees by the standard methods of linear

D( )(U) i p ()

where D ( U) is given by

(6)

algebra that their general solution is

=p @pp (5)
where p, ~ is antisymmetric in (o., P) but is otherwise
arbitrary [make a linear transformation to a new
"frame" in which @ = (1, 0, 0, . . . , 0) ]. When X is
sufficiently well behaved near @ = 0, and provided
the constraints are independent ("irreducible" )—which I assume —the solution (5) remains valid in
the vicinity of and on the constraint surface. Con-
versely, if X is given, and if one regards the equations
(5) as equations for the unknown p, P, a necessary and
sufficient condition for the existence of p, )' is that (4)
holds. In that case, p, p is determined up to the addi-
tion of v )')'@„, where v ) )' is an arbitrary, completely
antisymmetric "tensor. "

It turns out that the second-order structure func-
tions U(&2)~ also obey an identity of the form (2),
which enables one, as the above discussion of (4)
shows, to define the structure functions of order three.
Along exactly the same lines, one can then climb the
"ladder" of the structure functions and define succes-
sively the fourth-, fifth-, . . . order structure func-
tions.

More explicitly, one finds the following identity for
the structure functions of order ~ n.'

n
D(n)(U)~$'''~n 1 X [U(q)a]' 'aq U(n q)o,'+$'''u ]( )pl pn+2 2 p1 pq+1 pq+2 pn+2

q =0
n —1

(q+1)(n —q+1)U . . .
' ' U ~+' " ( —)"«+&)

q =0

This identity implies, from our analysis of the equation
(4), that the coefficients D(")(U) in (6) are combina-
tions of the constraints, i.e. , that one has

D(n)(U) 1 n

(p, p. '.,)

=(n+1)U ' " "+'@
Pn+2 ~n +1' (8)

Equation (8) defines the structure functions U(" + ') of
order (n +1) which are completely antisymmetric in
(Pl . P +2) and (~1 ~ +1).

It is important to emphasize here that the defining
equation (8) of U(" + ') only makes sense because of
the remarkable identity (6). Without it, there would
be no solution to (8) and there would be no "structure
functions" of order n +1. Hence, the entire ladder of
the structure functions leans on the identity (6), which
can be considered as the main result reported in this
Letter.

The identity (6)—which we know is true for

n =0, 1—is derived by induction as follows: (i) one
takes the Foisson bracket of the defining equation of
the (n + 1)th order structure functions with the con-
straints @ and one completely antisymmetrizes the
resulting expression with respect to the lower indices;
(ii) one systematically uses the Jacobi identity for the
Poisson brackets and the defining equations (8) of or-
der ~ n to transform the expression obtained in (i)
into the desired form (6), with n replaced by n + 1.

The calculations are relatively involved but present
only technical difficulties. They will be given in all
their glorious details in a forthcoming paper by the au-
thor, which also treats the case of anticommuting
constraints, discusses the ambiguity in U "+', and
points out that the identity (6) reflects the possibility
to transform (at least locally) any set of first-class con-
straints into equivalent Abelian ones.

The existence of (in general) nontrivial structure
functions is a purely classical result which has ap-
parently gone unnoticed so far and which has in itself
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some intrinsic interest. Presumably, it deserves fur-
ther study. However, the relevance of the structure
functions to the physical world goes much beyond the
classical domain: The functions play a key role in the
quantum theory through the Becchi-Rouet-Stora
(BRS) symmetry, ' as I now proceed to discuss.

It has emerged recently that quantum gauge fields
possess a remarkable invariance of the supersymmetry
type, called BRS symmetry. This invariance leads to
the Ward identity. Its generator 0 is an essential
building block of the quantum effective action. "'
Furthermore, in the "big" Hilbert space containing
transverse, longitudinal, and ghost states, the physical
subspace is simply defined as that subspace with zero
BRS charge, '

II (P) =0.
The anomalies possess also a transparent BRS interpre-
tation. '0 ' ' For these reasons, one can argue that
BRS symmetry is the fundamental symmetry of quan-
tum gauge fields, from which everything else fol-
lows. "

A key property of the BRS generator is its nilpo-
tence, 0 = 0. If one deals with the classical analog 0
of 0, this condition reads"

(10)

since, for anticommuting generators, the Poisson
bracket is symmetric and corresponds to the quantum
anticommutator. Without the nilpotence of 0, the
quantum theory would be inconsistent.

It is convenient for what follows to expand 0, in
powers of the ghost canonical variables ri, Q (one
such canonical pair per constraint),

Q g n 1+. . . ~lfI t 1

~] ' ' ' ~n+]. pn
n ~0

The coefficients 0 " do not depend on the ghosts.
Moreover, there is always one more q than there are

in each term of (11), so that fl is an odd element
of the Grassmann algebra and has ghost number + 1.

In order to make contact with gauge invariance, one
also demands that

(12)

This ensures that to lowest order in the ghosts, 0 gen-
erates gauge transformations in which the infinitesimal
parameters e are replaced by the ghost fields q .

So the question is this: Is it possible to fulfill the
nilpotency condition (10) and the "initial" conditions
(12) with the expansion (11)? This question has been
addressed long ago by Fradkin and his collaborators in
pioneer papers, "'s in which they show that (10) im-

plies the following equations on A t" +" (n ~ ()).

pn+2 ~n+1' (13)

The quantity D t") (A ) appearing in (13) has the same
form as Dt") ( U) [Eq. (7)], with Utq) replaced every-
where by 0 tq). Thus, the conclusion of Ref. 16 is that
0 exists provided one can find a solution to Eqs. (13).
However, to the author's knowledge, neither the ex-
istence of solutions to (13) nor the uniqueness prob-
lem has been discussed, so that the construction of the
BRS generator in the general case of arbitrary first-
class constraints stands so far on an incomplete,
heuristic basis (as also pointed out by Batalin and Vil-
kovisky' ).

It is here that the structure functions come into play.
If one compares (13) with the defining equations (8)
and notices that the condition (12) means that the

are just the zeroth-order structure functions, one
concludes that

(n)p& p„ (n)p& - p„
u~ a„+~ a~ o,„+~

(14)
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(to all orders). The structure functions are accordingly
th: coefficients of the BRS generator in an expansion
in powers of the ghosts. The existence of these struc-
ture functions, which relies on the identity (6) demon-
strated here, yields therefore an existence proof of 0
and makes it possible (in principle) to quantize any
gauge theory along BRS lines. 's Equations (11) and
(14)—and the remarks below Eq. (2)—also clearly in-
dicate that the BRS generator 0 contains, in general,
multighost interactions of order greater than 3.
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Note added. —After completion of this work, I was
kindly informed by I. A. Batalin that the "Moscow
group" had also obtained, some time ago, the ex-
istence proof of the BRS transformation in the general
case. In that respect, one cannot stress enough the im-
portance of the remarkable work by Fradkin and his
collaborators, which possesses an enormous range of
application.
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