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Noise and Chaos in a Fractal Basin Boundary Regime of a Josephson Junction
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(Received 25 March 1985)

By digital simulations and experiment, we study a Josephson system in a highly nonlinear regime.
High experimental noise values appear to correspond in simulations to intrinsic chaotic motion in
some regions and to noise-induced hopping between periodic solutions in others. Focusing on the
latter, we find correlation between high noise sensitivity and the fractal dimension of the boundary
between the basins of the periodic attractors. We show that if enough noise is present to push the
orbits into the basin boundary, behavior similar to intrinsic chaos results.

PACS numbers: 74.50.+r, 05.45.+b

The current-biased Josephson junction is a good sys-
tem for the study of nonlinear dynamics. It can be
well represented by the resistively shunted junction
(RSJ) model, one of the simplest mathematical sys-
tems to show chaotic behavior, well suited to digital
and analog simulation. Since the occurrence of these
phenomena was first predicted, ' many reports of dif-
ferent types of chaos in Josephson systems have been
made. 2 8 These studies have mostly focused on "in-
trinsic" chaos, in which the system orbit converges on
a strange attractor, causing unpredictably erratic
motion. However, Grebogi et ai. 9 have pointed out
the importance of the basins of attraction of a system
in determining its dynamics and have shown that their
boundaries often have a fractal structure. This causes
high sensitivity to initial conditions even if all solu-
tions found are periodic. In this work, we present the
first study of the effect of noise on a system exhibiting
a fractal boundary between basins of periodic attrac-
tors, based on extensive simulations and guided by ex-
perimental measurement. Our simulations show that
the addition of thermal and shot noise appropriate to
the experimental situation should induce intermittent
motion with excess low-frequency noise output, simi-
lar to that expected in an intrinsically chaotic region.
This prediction is consistent with our experimental
noise measurements.

Our measurements were made on a robust 5-p, m2

Nb —a-Si—Nb junction, fabricated at Sperry Research
Laboratories by the SNAP process. ' The junction
parameters are I, =425 p, A at 4.2 K, R„=3.2 0—R„,k/3, and C=0.23 +0.01 pF. The subgap leak-
age resistance was measured by magnetic depression of
the critical current, and the capacitance was chosen to
agree with SQUID resonance measurements on larger
junctions as described elsewhere. 7 Our ac drive source
is an optically pumped far-infrared laser, the output of
which is stable to —5'/o during our measurements.
The laser radiation is coupled to the junction by means
of a half-wave dipole antenna broadly resonant at 400
GHz. Because of its low impedance, the junction is
current biased by both the ac and the dc drives, in con-
trast with previous work done in this frequency range,

in which no chaotic behavior was found. "
All digital computer calculations used the current-

biased RSJ model, generalized to take account of the
change in quasiparticle conductance at the gap voltage
by use of a voltage-dependent resistance 8, equal to
A„above the gap [(6&+52)/e] and to A~„k below the
gap. The basic equation is

d@ 1 1@+
&l2

+ sin@

ML= id, +iJ sin t +i&,
O)p

where id„ iz, and iz are, respectively, the dc, the laser,
and the noise currents, all normalized to the critical
current of the junction. Moreover, p = 2eI,A2C/Ii—3.3 for voltages above the gap and —28 below the
gap. All times are measured in units of the inverse of
the plasma frequency, co~= (2eI,/tC) l The laser.
drive frequency fL = cuz/2~ = 419 GHz —l. leo~/2m.
Equation (1) was solved with a fourth-order Runge-
Kutta algorithm, in double-precision arithmetic.

Experimental measurements (mainly at T=4.2 K)
and simulations were performed over a wide range
of laser and dc currents, with 0 ( iL & 2.3 and 0( id, & 1.5. First, simulated and experimental I- V
curves were compared to ensure that satisfactory
agreement was reached. The results are impressive,
both in the specific features of the I-V curves, as
shown by (a) and (b) in Fig. 1 for a typical value of iL,
and in the overall quantitative dependence of the criti-
cal current on the laser power, shown in Fig. 1(c).
The latter fit determines the constant of proportionali-
ty between the square root of the measured far-
infrared laser power and the induced ac current
through the junction, there being no other free param-
eter. The good agreement depends on the good
parameter characterization of the sample and the use
of a nonlinear resistance in the simulations. Our main
sources of error are the uncertainty in the sample's
capacitance value, laser power calibration and fluctua-
tions, and the oversimplification in the piecewise-
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FIG. l. (a) Simulated and (b) experimental I Veurv-es.

The three flat regions are the zeroth, —, , and second Joseph-2

son step. No noise is added to the simulated curve. The
hysteretic behavior in (a) is found if continuity in It and @ is
maintained as id, is increased; random phase-space initial
conditions can produce solutions on either step. (c) Depen-
dence of the critical current of the junction on the laser
drive. (d) Computed basin boundary dimension and (e) ex-
perimental noise power measurements at 10 kHz as a func-
tion of dc bias. Curves (a) and (b) and plots (d) and (e) are
all for iL = 1 and share the same horizontal scale.

linear approximation for R.
After the calculation of the I- Vcurves, the simula-

tions were used to analyze the phase-space orbits of
the system. In some "noisy" experimental regions,
intrinsic chaotic motion was observed, characterized by
orbits on a strange attractor (with i~=0); we shall
term such regimes type A. In other experimentally
noisy regions, a fundamentally different behavior
(type 8) was observed in simulations; namely, all
phase-space orbits found were periodic in the absence
of added noise, each converging to a simple point at-
tractor. Which attractor the system converged on,
however, depended very sensitively on the initial
values of rt and rtl. Despite the difference in the simu-
lation, the low-frequency noise values observed exper-
imentally for both type-A and type-8 regions were
comparable for the entire parameter region studied.
The measured power spectrum (10 kHz —100 Hz) in
both type-A and type-8 regions was found to be ap-
proximately 1/f from 10 Hz to 1 kHz; the dependence
was more complicated at higher frequencies. For ex-
ample, a large peak was found at —5 kHz, which cor-

FIG. 2. Basins of attraction for iL = 1 and id, =0.15. The
white region is the basin of the T-step solution, correspond-
ing to the three-point Poincare section indicated by the
centers of the black circles. The black region is the basin of
the zeroth-step solution, with one-point Poincare section
(white circle). No noise is included.

responded to a small ( ( 0.01o/o) modulation in the
laser power supply, indicating an extreme noise sensi-
tivity of the device in these regions.

To gain a better understanding of the mechanism
behind the high experimental noise values in the rela-
tively unexplored type-8 regions, we focused our
simulations on one typical parameter range, iz= 1
0.09(id, (0.25. With no added noise, dependent
upon the initial conditions, one of two periodic solu-
tions was found. The periodicity of these solutions
was exact, within the accuracy of our simulations, over
several thousands of drive cycles. The basins of attrac-
tion of these solutions, however, were found to be ex-
tremely complex, as illustrated in Fig. 2, by use of a
200X 200 grid of initial conditions. The RSJ equation
(with i~ = 0) was solved for each initial condition on
the grid and, after an initial transient, the system
would converge on one of two phase-locked solutions.
If the system converged on the first, corresponding to
a zeroth-step solution (( V) =0), a black square was
plotted. If the system converged on the second, corre-
sponding to ( V) = ,' (tarL/2e), the "—,' "

ste—p, a white
square was plotted. Thus, the black and white regions
in Fig. 2 depict the two basins of attraction. The basin
boundary has a fractal structure, of dimension
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(o) I T =50K (b)

0 = 1.75, estimated by measurement of a correlation
exponent, as described by Grassberger and Procaccia. '2

Grebogi etal. developed an argument relating the
dimension of the basin boundary to the sensitivity of
the system to initial conditions. They point out that if
the initial conditions are uncertain by a small amount
e, in D-dimensional phase space, the fraction of solu-
tions starting close enough to the boundary to have an
uncertain outcome is

(2)

where dis the fractal dimension of the boundary. This
predicts a large fraction of uncertain solutions and thus
extraordinary sensitivity for 1—D. Our simulations
show a fractal basin boundary with large d for a singifi-
cant range ( —+0.1) of dc and laser current values,
as shown for i~, in Fig. 1(d). This regime should then
exhibit very high sensitivity to uncertainty in initial
conditions and, going one step further, to noise. Our
experimental results back this hypothesis, as shown in
Fig. 1(e). Displayed is the noise output measured on a
PAR 124 lock-in amplifier in the ac voltmeter mode at
10 kHz with a 10/o bandwidth. The variation in the
experimental noise output in the region studied corre-
sponds qualitatively to the variation of the calculated
fractal basin boundary dimension with iz„as expected
on the basis of the above argument, given thermal and
shot-noise inputs in the experimental system. By con-
trast, the experimental variation with iz, correlates less
well, for example, with the nearly constant slope of the
smoothed I- Vcurve in this region. No values of dare
shown in Fig. 1(d) for iz, ) 0.3, since no sensitive

dependence on initial conditions (i.e. , no fractal basin
boundary) was observed in the simulations. The two
other noise peaks displayed (at i~, —0.45 and —0.62)
are associated with type-A intrinsic chaos and noise
amplification due to high dynamic resistance of the I
V) curve.

Our basin-boundary study thus provides a mechan-
ism to explain the high experimental noise values in
the type-B regions. To obtain the phase-space motion
of the system and a measure of the concomitant noise,
we reverted to simulations. Noise was first included in
the calculations as a white Johnson noise source. "
Every simulation was begun with the system at a very
high noise temperature ( T—1000 K) and then gradu-
ally "annealed" until the desired temperature range
was reached. After we waited for some additional cy-
cles to discard initial transients, the Poincare section
and the power spectrum of the solution were calculat-
ed over at least 3200 cycles, with a time step of one-
thousandth of a drive cycle.

The Poincare section of Fig. 3(a) shows the
behavior in a fractal basin boundary regime if only a
small amount of noise (T=1 K) is added to the sys-
tem. The motion is still essentially periodic and quali-
tatively similar to the case with no added noise, depict-
ed in Fig. 2 by black circles; the orbit is still well within
the basin of attraction of the —', step. If we add more
noise, the nature of the orbit becomes very different,
as shown in Fig. 3(b). The resulting Poincare section
is stretched out anisotropically, reproducibly filling in a
complicated region of phase space. It is very similar to
the Poincare section for an intrinsic chaotic regime
(type A), displayed in Figs. 3(c) and 3(d). In general,
we found a great similarity in all the Poincare sections
calculated for experimentally noisy regimes (types A
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FIG. 3. Effect of added Johnson noise on the Poincare
sections for the system: (a), (b) in a fractal basin boundary
regime at i„,= 108 and i~ =1, and (c), (d) in an "intrinsic"
chaotic regime at i~, = 0.15 and IL,

= 1.5.

FIG. 4. Effect of added Johnson noise on the po~er spec-
tra of the solutions in a fractal basin boundary regime.
Parameters are i&, =0.18, II =1, and the effective tempera-
ture of the added noise varies from T = 1 to T = 50 K.
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and 8) as long as the effect of thermal noise ( T ) 5
K) was included, providing a plausible explanation for
the comparable noise values observed experimentally
in type-A and type-8 regions.

The power spectrum of the solutions in the fractal
basin boundary regime show noise-induced intermit-
tency leading to large low-frequency noise. This is
shown in Fig. 4 where the spectrum is approximately
1/f for at least two frequency decades over a wide
noise temperature range. (The peak at fL/3 reflects
the residual effect of the period-three phase lock. )
Such behavior is common in the parameter region in-
vestigated here. The occurrence of switching and ex-
cess low-frequency noise has a well-defined threshold
noise temperature. The Poincare section for 5 K is
still localized within the basin of attraction of the —,-

step solution but comes very close to the boundary. A
small increase in the added noise pushes the orbit out
into the basin boundary. This causes sudden changes
in the Poincare section, which begins to resemble a
strange attractor, and in the power spectrum of the
solution, which develops excess low-frequency noise.
The situation is qualitatively similar to an interior
crisis occurring in intrinsic chaotic systems, in the
neighborhood of which an intrinsic approximately 1/f
power spectrum was recently found by Gwinn and
Westervelt.

If shot noise is included in the calculation, " similar
results are obtained. However, the 1/f power spec-
trum now holds down to T= 0, since the magnitude of
the added noise bottoms out at a finite value, corre-
sponding to a Johnson noise temperature of the order
of 10 K, as a result of the varying instantaneous vol-
tage across the junction. In contrast with the classical
pendulum model, here the quantization of the electronic
charge induces shot noise in the junction current suffi-
cient enough to destroy the system's periodic motion
and induce excess low-frequency noise, even at T = 0.

In conclusion, we have shown how the presence of a
fractal basin boundary in the dynamics of a nonlinear
system may give rise to chaotic motion and extraordi-
nary low-frequency noise when the effect of naturally
occurring thermal and shot noise is included. Both the
nature of the motion and the magnitude of the mea-

sured noise output are comparable to those found in
intrinsic chaotic regimes.

We are pleased to acknowledge some essential sug-
gestions by E. G. Gwinn and helpful discussions with
S. W. Teitsworth, R. F. Voss, and J. U. Free. We also
acknowledge the contribution of the samples by L. N.
Smith, use of computer equipment by S. L. Pope, and
the collaboration of J. U. Free in computations at
Eastern Nazarene College. This research was support-
ed in part by the U.S. Office of Naval Research under
Contract No. N00014-83-K-0383 and by the Joint Ser-
vices Electronics Program under Contract No.
N00014-84-K-0465.

B. A. Huberman, J. P. Crutchfield, and N. H. Packard,
Appl. Phys. Lett. 37, 750 (1980).

2R. L. Kautz, J. Appl. Phys. 52, 3528 (1981), and 58, 424
(1985).

3R. F. Miracky, J. Clarke, and R. H. Koch, Phys. Rev.
Lett. 50, 856 (1983); R. F. Miracky, M. H. Devoret, and
J. Clarke, Phys. Rev. A 31, 2509 (1985).

4M. Octavio, Phys. Rev. B 29, 1231 (1984); M. Octovio
and C. R. Nasser, Phys. Rev. B 30, 1586 (1984).

5N. F. Pedersen and A. Davidson, Appl. Phys. Lett. 39,
830 (1981);D. C. Cronemeyer, C. C. Chi, A. Davidson, and
N. F. Pedersen, Phys. Rev. B 31, 2667 (1985).

6E. G. Gwinn and R. M. Westervelt, Phys. Rev. Lett. 54,
1613 (1985).

7Qing Hu, J. U. Free, M. Iansiti, O. Liengme, and
M. Tinkham, IEEE Trans. Magn. 21, 590 (1985).

8M. J. Kajanto and M. M. Salomaa, Solid State Commun.
53, 99 (1985).

9C. Grebogi, S. W. McDonald, E. Ott, and J. A. Yorke,
Phys. Lett. 99A, 415 (1983); C. Grebogi, E. Ott, and J. A.
Yorke, Physica (Amsterdam) 7D, 181 (1983).

~oH. Kroger, L. N. Smith, and D. %. Jillie, Appl. Phys.
Lett. 39, 280 (1981).

»W. C. Danchi, F. Habbal, and M. Tinkham, Appl. Phys.
Lett. 41, 883 (1982); W. C. Danchi, J. Bindslev Hansen,
M. Octavio, F. Habbal, and M. Tinkham, Phys. Rev. 8 30,
2503 (1984).

~2P. Grassberger and I. Procaccia, Phys. Rev. Lett. 50, 346
(1983).

749


