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New Ground State for the Splay-Freedericksz Transition in a Polymer Nematic
Liquid Crystal
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We have discovered a new form of Freedericksz transition in which uniform splay distortion is
replaced by a complex periodic twist-splay pattern having a lower critical field than that for uniform
splay. Experimental evidence is presented along with an exact calculation of both the critical field
and the initial form of the distortion as a function of the ratio of the splay and twist elastic con-
stants.

PACS numbers: 61.30.Gd, 61.40.Km

One of the most useful and well-studied phenomena
in the physics of liquid crystals is the field-induced dis-
tortion of a thin liquid-crystal film called the
Freedericksz transition. ' This Letter describes a new
type of Freedericksz transition which occurs in the im-
portant class of liquid crystals composed of very long
particles. A Freedericksz transition in a polymer liquid
crystal will be described in which the equilibrium
structure of the sample is spatially periodic in the plane
of the sample. This periodic state is seen in Fig. 1,
which shows a polarized-light photomicrograph of a
polymer-liquid-crystal sample, well aligned parallel to
the glass, which has been in a magnetic field about 1.3
times the critical field and has slowly, over a period of
several hours, developed stripes which appear to
remain static thereafter. These static equilibrium
stripes are parallel to the original alignment direction
of the liquid crystal, while stripes which are the result
of dynamic effects2 are oblique. We propose that the
periodic distortion shown in Fig. 1 occurs because, in
liquid crystals composed of very long particles, the
elastic constant associated with splay is much larger

FIG. 1. Polarized-light photomicrograph of the periodic
splay-twist distortion in PBG. The distance between two
dark bands is 32.5 p, m. The field is perpendicular to the
plane of the sample, and the unperturbed director is parallel
to the stripes.

than that associated with twist.
A nematic liquid crystal is a fluid phase composed of

elongated particles oriented more or less parallel to
each other in their ground state. The average local
orientation of the particles can be described by a unit-
vector field n called the director field. The director
can be aligned by interaction with a surface; in our
case the surface is treated so that the director will be
parallel to the surface and oriented in a well-defined
azimuthal direction, no. If a thin film of liquid crystal
is placed between two so-treated parallel plates, the
lowest-energy state of the system will be one in which,
as a result of the elasticity of the liquid crystal, the
director is constant throughout the bulk of the sample.

The director can also be aligned by an applied mag-
netic field, H, through the anisotropy of the suscepti-
bility, b, X. In our case, bX is positive, so that the
director aligns parallel to H. Thus, when we orient the
field perpendicular to the plane of the sample a com-
petition results. The director in the interior of the
sample is subjected to the field torque trying to rotate
it, but at the same time, it experiences an elastic re-
storing torque due to the strongly anchored surface
layers. For an applied field below a critical strength,
H„nodistortion occurs. For fields larger than H„the
ground state of the system is one in which the director
in the interior is distorted by some angle from its un-
disturbed alignment direction. This is known as the
splay-Freedericksz transition because, in the limit of
small amplitude, a resulting distortion which is uni-
form in the plane of the sample involves only splay de-
formation.

In our case, however, the transition done in this
geometry produces not a uniform distortion, but the
stripes seen in the photograph of Fig. 1. The sample in
this photograph had been in a field of about 6 kG, for
several hours. During this time the stripes developed
very slowly, becoming barely visible after 2 h. After 4
h the field was increased to 8 kG in order to cause the
amplitude of the distortion to become large enough to
photograph. The sample used is a 37-p, m-thick film of
a racemic mixture of the levo and dextro versions of
the synthetic polypeptide polybenzylglutamate (PBG)
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(obtained from Sigma Chemical Co.) dissolved in a
mixture of dioxane and methylene chloride. The key
material characteristic of this liquid crystal, in the
present context, is that it is a solution of molecules
which are of the order of 70 times as long as they are
wide, while low-molecular-weight nematic molecules
are of the order of 5 times as long as they are wide.

Figure 2(a) is a representation of the uniform
Freedericksz distortion, awhile Fig. 2(b) gives a
schematic representation of the proposed periodic dis-
tortion. The periodic distortion shown in Fig. 2(b),
while it appears to be composed of an orthogonal pair
of spatially periodic splay patterns, is in fact a distor-
tion that can be composed of twist alone. The fact that
an apparent periodic splay pattern can actually be pure
twist (in the small-amplitude limit) is the essential
novelty of this structure.

In a given liquid crystal, the form of the
Freedericksz transition which actually occurs will be
the one which has the lowest critical field. In a materi-
al with a splay elastic constant K~ which is much larger
than the twist elastic constant K2, the periodic distor-
tion will have a lower critical field than the uniform
distortion since it avoids splay. On the other hand, be-
cause of its more complex structure, the periodic dis-
tortion requires more elastic energy to relax a given
amount of field energy than does the uniform distor-
tion. Therefore, it should be expected that in materi-
als in which Kt is not much bigger than K2, the uni-
form distortion will have a lower critical field.

For quantitative analysis of this problem, a general
method for computing the critical field for the
Freedericksz transition is required. Such a method is
based on the variational calculation of the state of
minimum free energy. Setting the variation of the
free energy with respect to the director function equal
to zero produces a set of differential equations. For an
applied field which is smaller than the critical field, the
lowest-energy solution to this set of differential equa-
tions will be a director function which describes the
undistorted state, i.e. , the trivial solution. For an ap-

(a)
FIG. 2. Schematic representation of (a) the uniform

spiay-Freedricksz distortion, and (h) the periodic splay-twist
distortion.

plied field which is larger than the critical field, on the
other hand, a state of finite-amplitude distortion will
be the minimum energy state of the system. Conse-
quently, we will adopt the definition of the critical field
as the smallest field at which a nontrivial director func-
tion is the solution of these differential equations.
Normally, this is a second-order transition so that the
amplitude of the equilibrium distortion goes continu-
ously to zero at the critical field.

Solving this problem exactly, as described above, in-
volves dealing with nonlinear differential equations for
which the possibility of obtaining analytic solutions is
questionable. However, to study the critical field a
simplifying limit can be taken. Because, close to the
critical field, the distortion amplitude is arbitrarily
small, linearized expressions can be used. In such a
linearized picture a pattern of stripes parallel to the
director is described by the functions

n„=I, n~=g(y, z), n, = f(y, z),

and the free energy is given by

I'" = —,
'

J J dy dz[Kt(g + f, )z+K2(g, f ')—
(Subscripts on fand gin all following expressions indi-
cate partial derivatives. )

The meaning of a variational calculation on a linear-
ized free energy is somewhat special. It determines
the form of the distortion for which the free energy is
independent of the amplitude of the distortion, i.e.,
for which the negative field-energy change just cancels
the positive elastic-energy change, since both of them
are quadratic in the amplitude of the distortion. With
boundary conditions which fix some parameters of the
distortion, such as a wavelength corresponding to the
sample thickness, this determines one or more field
strengths satisfying the equations, the lowest of which
is the critical field. Thus this calculation tells us noth-
ing about behavior above the critical field other than
the initial form of the distortion just at the critical
field.

In the case of low-molecular-weight liquid crystals
the distorted state is uniform in the plane of the sam-
ple, i.e. , n~=0, and f depends only on z Varying the
free energy with respect to f(z) results in the differen-
tial equation

f~= ( —bx H /Kt) f.
The solution satisfying the boundary conditions, i.e. ,f= 0 at z = + d/2, with minimum value of the field,
H„is

f= A cos(m z/d), H, = (7r/d) (K,/ax) t~'.

In order to calculate the critical field for a distortion
which is periodic in the plane of the sample, one must
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start from a general distortion function which is
periodic. From the translational symmetry of the
linearized equations one can show that sinusoidal solu-
tions with different wave vector in y are independent
of one another. Therefore, the most general solution
which should be considered is of the form

n, = f(z)cos(qy), n~=g(z)sin(qy),

for which the free energy (averaged over y) is
p+d/2F= —,

'
J dz[K t(gq+f, ) +K2(g, +qf)

—AXH f2].
The differential equations obtained are

Kt (gq + qf, ) —Kz(g + qf, ) = 0,

—Kt ( qg, + f~ ) + K2 (qg, + q f) —b X H2f=0.

Following the usual procedures, we find a general
solution of the form
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f= A t cosh(qtz) + c42 cos(q2z),

g = Bt sinh(qtz) + B2 sin(q2z),

in which qt and q2 are determined from the differen-
tial equations. The boundary conditions require that

(Bt/A t ) (2 2/B2) tanh(qt d/2) = tan(q2d/2) .

This equation is solved numerically to find the
minimum value of H for which a solution exists. The
results for H, and q are shown in Fig. 3. For Kt/K2
less than about 3.3, there is no solution to these equa-
tions. At that point, however, q goes to zero, and the
H, obtained becomes equal to H, (uniform splay), with
the two curves meeting tangentially. This is a kind of
second-order transition in which the striped solution in
the limit of zero q becomes identical to the pure splay
mode. A remarkable feature of this result is that the
critical value of Kt/K2 is only 3.3. This is not an enor-
mous anisotropy. One might easily imagine that this
ratio could occur in some ordinary nematic liquid crys-
tals. However, the striped Freedericksz transition of
this kind has not been reported before'. There are
some electric field effects that produce stripes parallel
to the director, but they occur with a negative dielec-
tric anisotropy, and are therefore not a Freedericksz
transition.

At the limit of KJKt becoming zero, i.e. , infinite
splay elastic constant, the only distortion possible is a
pure twist mode, which is given by

n, = fq cos(qy), n~= f, sin(qy). —

The calculation for K2/Kt=0 yields the following
parameters for f, q, and H, :

A t/A2= 0.018, qt = 2.51m/d, q2 = 1.31~/d,

q = 1.51m/d, H, = 2.64(m/d) (K2/5X) t~z.
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FIG. 3. Calculated values of (a) the critical field for the
periodic splay-twist distortion, and (b) the in-plane wave
vector.

Independent measurements of Kt/Kq in the range
of 10 to 30 have been made in this laboratory with use
of light scattering methods in the same samples in
which the periodic Freedericksz transition has been ob-
served. 4 Furthermore, with these same samples,
Freedericksz-transition measurements were made with
the field in the plane of the sample, yielding values for
K2/b, X, and in a homeotropic section of the samples,
yielding values for K3/AX and Kt/K3. These results
were used to calculate the critical field and the
wavelength for the periodic transition in the sample
shown in Fig. 1. The predicted critical field of 4.25 kG
is consistent with our experiment. The calculated
wavelength is 52 p, m, while that observed is 65 p, m.
The fact that the observed wavelength, produced by a
field 1.3 times the critical value, is longer than the
predicted wavelength at H, should not be considered a
serious disagreement since the theory makes no pre-
dictions for the behavior above the critical field. Prob-
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ably the equilibrium wavelength should increase above
H, due to nonlinear effects. We do not view this
phenomenon as a useful method for measuring Kt and
K2. The static limit is very hard to approach, since
near H, response times become very long, while for
fields a little above H, a different phenomenon, in-
volving obliquely oriented stripes generated by dynam-
ic effects dominates the behavior of the system. 2

Experimentally, the existence of this phenomenon
means that for Kt/K2 ) 3.3, there is no longer a sim-
ple way of measuring Kt by the Freedericksz transi-
tion. Another field-alignment experiment involving
the use of a magnetic field oriented at only a small an-
gle with respect to the undisturbed director may be the
next simplest method for determining Kt. It requires
the measuring of the distortion amplitude as a function
of field strength, rather than the simple determination
of a critical field.

Theoretically, one could continue to study this
phenomenon by determining the behavior above criti-
cal field, either by solving the full nonlinear problem
or by numerical simulation methods. Our present
analysis has found an instability that is almost surely
the beginning of a continuous transition; the experi-
mental evidence supports this interpretation. Howev-
er, it is conceivable that a first-order transition to a
state of finite distortion with a lower free energy could
occur. In any case, one might expect that at high
fields the periodic structure is replaced again by a uni-

form one, as the sample structure evolves to one con-
sisting of a uniformly aligned central region with boun-
dary layers at the surfaces. Even in these boundary
levels, splay might be replaced by a periodic twist
structure of some kind if the ratio Kt/K2 is large
enough.

In conclusion, we see that the geometric complexity
of nematic liquid crystals still offers possibilities for
the discovery of new phenomena.
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