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Threshold Behavior near an Electronic Shape Resonance: Analysis of the He( P ) Threshold
in He Photodetachment and Determination of the He(23S) Electron Affinity

J. R. Peterson, Y. K. Bae, and D. L. Huestis
Molecular Physics Department, SRI International, Menlo Park, California 94025

(Received 11 April 1985)

He photodetachment cross sections near the He(23P) threshold have been measured and
analyzed. The data were found to deviate rapidly from the signer threshold law because of the
strong influence of the nearby "I"shape resonance. A modified formula has been derived, which
accounts for this effect. It successfully fits the data not only in the threshold region but over the
resonance itself. The threshold data yield an electron affinity for He(23S) of 77.5 +0.8 meV, in
agreement with the accurate calculations of Bunge and Bunge.

PACS numbers: 32.80.Fb, 34.80.Dp, 35.10.Hn

The energy dependence of cross sections near the
thresholds of opening reaction channels has been of
interest for years, as has their behavior near scattering
resonances. However, little attention has been given
to the combined effects. We describe here, for the
first time, the effects of a shape resonance on the
threshold behavior of opening-channel cross sections.

In the first measurements near the large Is2p2~P'
shape resonance in He photodetachment' we were
unable to operate the cw dye laser far enough into the
infrared to reach the He(2 P) +ep threshold at
A. = 1015 nm for a determination of the
He(1s2s2p 4P') binding energy. Improvements in
both the experimental arrangement and the laser
operation have led to a great reduction in the uncer-
tainties of the data in the resonance region and have
allowed measurements down to the 235 threshold.
The data reveal the form of a shape resonance in
unprecedented detail. In the threshold region the
cross sections deviate rapidly from the Wigner thresh-
old law, 2 preventing its use in locating the He(23P)
threshold. Evidently, the presence of the nearby reso-
nance strongly affects the cross sections very close to
the threshold.

To account for these effects we have derived a
parametric expression that successfully describes not
only the threshold region but the resonance as well.
Least-squares fits to the data yield an accurate value of
the threshold energy, as well as parameters that closely
approximate the energy and width of the resonance.
This Letter is concerned primarily with the behavior of
opening-channel cross sections in the vicinity of a p-
wave shape resonance, and with the determination of
the He(235) electron affinity (EA). A more complete
description of the "P' resonance itself and of the ex-
periment will be given elsewhere.

According to Wigner's threshold law, 2 derived for
short-ranged opening channels whose interaction ener-
gies fall off faster than r, the photodetachment cross
section o- near the threshold should behave as

g2l+ 1
P

where k and l are, respectively, the linear and angular
momenta of the outgoing electron. Accordingly, for
this p.wave channel, the energy dependence near
threshold should be given by

~ —(E—E )'I' (2)

where E is the photon energy and Eo is the threshold
energy. In attempting to fit our data by this form, we
found that the value of Eo determined by the least-
squares fitting procedure was never independent of the
number of data included, and when the fitted curve of
Eq. (2) was compared to the data, it was apparent that
the increasing oscillator strength due to the resonance
affected the cross section very close to the threshold,
and the Wigner law could not be used. Although ini-
tially frustating, this finding was not entirely surprising
because of our prior knowledge'~ that the resonance is
located only —10 meV above the threshold and has a
width (FWHM) of —7 meV. The deviations from the
signer law are much greater than would be expected
from polarization forces, whose effects were formulat-
ed by O' Malley. s Rapid deviations from the Wigner
law have already been found in the photodetachment
of alkali-metal negative ions above the first outgoing
s-wave thresholds. These were observed experimental-
ly6 7 in Rb and Cs, and in ah initio calculations on
K . These thresholds are near Feshbach resonances.
Nesbet9 has expressed a multichannel theory for s
wave-threshold resonance structure; however, we are
unaware of any previous formulation of a threshold
law that explicitly includes the effects of a shape reso-
nance. '0 Subsequent to the analysis of shape-
resonance effects described here, we have applied
Nesbet's theory to explain deviations from the Wigner
law for an s-wave cusp, which we observed experimen-
tally in Li photodetachrnent" and which has also
been found in ab initio calculations. s We found that
photodetachment near the opening Li(2p)+es chan-
nel threshold is affected by a virtual state, and derived
a modified signer cusp form. "

%'e present here one approach to the shape-
resonance problem, using standard scattering theory.
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We have also found that essentially the same results
can be reached by other methods.

The total cross section for the photoexcitation of a
single opening detachment channel may be written as

(3)~, —ki~il2,

where M, is the dipole matrix element connecting the
initial (negative ion) and final (atom plus electron)
states. M~ contains only contributions from a small
finite region of space because of the localization of the
initial wave function. Since (near threshold) the
asymptotic energy of the final-state wave function is
infinitesimal compared to the interaction energy in this
localized region, the only characteristic of the local
final-state wave function that is sensitive to small vari-
ations of the asymptotic energy is the amplitude,
which is proportional to the inverse of the (volume)
normalization factor of the asymptotic wave function.
Following this idea, O' Malley' factored MI as

M( —%) M, (4)

and we point out that the Jost function is related to the
scattering matrix S&(k) by' S~(k) = f~( —k)/ fi(k).
Now, from Eqs. (3)—(5), we see that the cross section
of the new opening channel near its threshold may be
written as

k2I+ 1 if (k) I

—2 (6)

The following arguments are based on standard
scattering theory '.If there is no zero of fr(k) in the
complex k plane (corresponding to a pole of the
scattering matrix, i.e. , a resonance) near the threshold,
then fi(k) can be regarded as constant over a small
range of k —0, and the cross section Eq. (6) follows
the Wigner threshold law, Eq. (1). However, if there
is a zero of fi(k) (a resonance) near the threshold, as
often occurs in electron scattering at energies near ex-
cited neutral states, then fi(k) can vary strongly, and
Eq. (6) deviates from the Wigner law very close to the
threshold.

To see how f;(k) depends on k when it has a zero
close to k=0, we assume'3 that the attractive interac-
tion potential (correlation energy) X V(r) in the final
state is short ranged as in electron-atom scattering or
photodetachment, neglecting the polarization poten-
tial. '4 The parameter l1. represents the strength of the
potential, and if X =Xp, the zero of fi(k) occurs at
k=O. We suppose that X —Xo is small, and that near

where N1 is the normalization factor of the asymptotic
final-state electron wave function and M' is a constant
to lowest order in k2. O'Malley5 also noted, with
reference to Gillespie, '2 that N1 is connected to the
Jost function fi(k) by

NI = i' (k) I k ',

k = 0, fI(k) can be expanded as'3

fi(k) —
peak +iyik '+ +q1(A. —Xp)

+ higher-order terms,

k3/[(k2 k2)2+I 2] (10)

which is simply a product of the Wigner threshold law
and the Breit-Wigner resonance formula. It also can
be seen that the denominator of Eq. (8) is similar to
the Breit-Wigner resonance form but the decay rate is
given by yk3. In this case, k12/2 and yk13 only approx-
imate the position and width of the resonance.

As we mentioned above, equivalent forms can be
derived in other ways. Our first approach'~ was to
model photodetachment via a shape resonance above a

where pi, yi, and qi, are real constants that depend
only on the shape of the potential'3 (not on its
strength) .

For l = 0, if A. ) A. p, the potential is strong enough to
create a bound-state (Feshbach) resonance and the
corresponding zero lies on the positive imaginary axis
of the k plane. As X decreases, the zero moves down
the imaginary axis and finally reaches k = 0 when
A. = A. p. If l1. becomes less than l1.p, then the zero moves
onto the negative axis and is referred to as a virtual
state. On the other hand, for l ~ 1, a bound state has
two zeros located on the positive and negative imag-
inary axes, which move toward k=0 as A. A.p. If A.

becomes less than A. p these two zeros leave the imag-
inary axis in opposite directions, moving into the lower
half of the k plane, and the zero on the right bears a
shape resonance at E ) Ep. Physically this means sim-
ply that in order to support a shape resonance when

A. p, the centrifugal barrier (produced when l ~ 1)
is necessary. The scattering phase shift increases
through (n+ ,' )7r as—the energy passes through both
bound and shape resonances, but not for virtual states.

We only consider the case of l = 1. The cases where
l~2 are more complicated. For the i=1 case, if we
keep the three lowest-order terms of Eq. (7) and com-
bine them into Eq. (6) we have

k3/ [(k2k2)2 +y2k6] (8)

where k1 = —q, (& —Xp)/PI and y = y, /P, . The
denominator of Eq. (8) is cubic in k2, and further ma-
nipulation allows its transformation into

(k2+g)[(k2 k2)2+12]

where 3 is a constant (which we found in this work to
be much larger than k2). Here, k&2/2 and I' are the
real and imaginary parts of the resonance zero in the
complex energy plane, and thus are the position and
width of the resonance. If, for small k, we approxi-
mate k2+ A as a constant, then we can transform Eq.
(8) into
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square well. The problem was easily solved for I = 1,
yielding Eq. (10) with I" an undetermined but slowly
varying function of energy. On the other hand,
Watanabe'6 has made an extensive treatment of five
doubly excited states of He, using hyperspherical
coordinates (and multichannel quantum-defect
theory). Although he was not able to determine
whether He (4I") was a Feshbach or shape reso-
nance, he calculated photodetachment cross sections
for both cases. While preparing the final version of
our manuscript we found that by using his approxima-
tion for the energy-normalized quantum defect near
the resonance, Eq. (53), in his Eq. (54a), which ap-
proximates the cross section near the resonance, the
latter can be reduced to the form of our Eq. (8).

As details of the experimental technique and ap-
paratus are given elsewhere, ' only brief descriptions
are presented here. He ions were formed from a 2-
keV momentum-analyzed He+ beam by two-step elec-
tron capture in Cs vapor. The three He+ o charge
components were separated by an electrostatic quadru-
pole whose ion-optical properties and geometry facili-
tate a coaxial laser-ion —beam interaction. Two 1.4-
mm (horizontal) &&2.2-mm (vertical) apertures at the
exit of the first quadrupole and the entrance of the
second quadrupole served to define the field-free in-
teraction region, as both laser and ion beams were ini-
tially larger than the apertures and essentially uniform
over its area. The neutrals formed from either auto-
detachment or photodetachment impinged upon the
electrically conductive surface of a glass plate to pro-

duce secondary electrons which were accelerated to a
channel electron multiplier for detection. The laser
optics and the dye (IR 140) were the same as we used
previously, ' but the dye performance was improved by
doubling the concentration of the dimethyl-sulfoxide
solvent. As the laser and ion beams both effectively
and uniformly filled the beam-defining apertures, the
total photodetachment cross section o-T is approximat-
ed very well by

(T T
= so U/ I rp d, (11)

where s is the photodetachment neutral-product count
rate, a the area of the defining aperture, v the velocity
of the He ion, i the He current estimated from
the count rate of autodetached He neutrals, i~ the
equivalent photon current, and d the length of the in-
teraction region.

Figure 1 shows a least-squares fit of the first seven
data by the Wigner threshold law, Eq. (1). As a result
of the strong effects of the shape resonance the cross
section rapidly deviates from the Wigner law. Because
of this rapid deviation and the large uncertainties of
the data near the threshold (where the laser was
weak), the threshold value obtained by fitting the data
with the Wigner threshold law increases substantially
when the number of data points used for fitting in-
creases. On the other hand, both Eqs. (8) and (10)
gave quite good fits, not only to the threshold data as
shown in Fig. 1., but to the entire resonance peak as
well, as is seen in Fig. 2.
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FIG. 1. Least-squares fits of near-threshold data curve:
dashed curve, signer threshold law; solid curve, modified
form.

FIG. 2. Least-squares fit of all data (within 170 meV of
threshold) by Eq. (g). The fit of Eq. (10) is indistinguish-
able except in the high-energy tail.
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TABLE I. Threshold and resonance energies (in millielectronvolts) obtained from data

fits.

Equation
He(2'P)

threshold Eo
He(2'S)

EA
Resonance parameters

Position above Eo Width

(8)
(10)

1222.0 + 0.8
1222.1 + 1.0

77.5 +0.8
77.6 + 1.0

k2/2 = 12 3 +0 3
kg'/2 = 10.8 + 0.3

yk)3 = 8.6 +0.4
r =7.4+0.3

Above the 2 P threshold, a. T consists of a small con-
tribution o.o from the continuum of the 2 5+ e(s+ d)
channel, which is estimated from our earlier data' to
be 3.5 x 10 ' cm at the 2 P threshold, and we as-
sumed it to be constant over the small energy range of
this work. This background level is shown in Fig. 2 as
the short horizontal line near the threshold and is very
small compared to the 23P + ep cross section
a. =~T—o.o, even in the threshold region shown in
Fig. 1. The resonance parameters in Eqs. (8) and (10)
were first established by fitting all data within 170
meV of threshold. This fit is shown in Fig. 2. We
note that k /2= hv —Eo, where hv and Eo are the
photon and threshold energies. All the data were
weighted according to the inverse square of their ex-
perimental standard deviations. Equation (8) gave
kt /2+ Eo = 1234.3 meV and 7 kt = 8.6 meV; Eq. (10)
yielded kit/2+ Eo 1232.9 meV——and y = 7.4 meV.
Next, ki, y, kz, and I" were held fixed and only the
data within 10 meV of threshold were used to find Eo.
This fit is shown in Fig. 1. The threshold given by Eq.
(8) is shown in Fig. 2. These threshold fits yielded the
electron affinity of He(235) to be 77.5 +0.8 meV
from Eq. (8) and 77.6 + 1.0 meV from Eq. (10). The
uncertainties have been determined by combining the
uncertainties in the fitting parameters [0.7 meV for
Eq. (8) and 0.9 meV for Eq. (10)] and laser
wavelength calibration (0.2 meV). The uncertainties
in the threshold data arose primarily from the weak
output of the dye laser near its own operational thresh-
old. A summary of the results is given in Table I.
These results are in excellent agreement with the elec-
tron affinity of 77.51 +0.04 meV recently calculated
by Bunge and Bunge. '~

In summary, we have measured and analyzed He
photodetachment cross sections near the He(23P)
threshold which is affected strongly by the P' shape
resonance. We derived a modified formula from the
scattering theory which fits not only the threshold re-
gion but the entire resonance. From the fittings the
electron affinity of He(23S) has been determined to be
77.5 + 0.8 meV, in excellent agreement with the calcu-
lation by Bunge and Bunge.

Because shape resonances are "bound" only by cen-
trifugal barriers connected with opening channels, it is

their nature to be located close to thresholds, with
widths comparable to the separations. Therefore, it is
quite likely that they will always have a strong influ-
ence in the threshold behavior.
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