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The spectrum of a supersymmetric quantum mechanical theory that leads to a generalized su-
peralgebra is computed exactly. It has the feature that both the ground and first excited levels have
unequal numbers of Bose and Fermi states.
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Supersymmetry' is increasingly emerging as the
main new concept that theoretical physicists are using
in their efforts to understand nature. A lot of atten-
tion has been focused on the techniques of breaking
supersymmetry in ways that do not compromise the
good quantum properties of supersymmetric theo-
ries. 2 3 In this Letter, I describe a supersymmetric
quantum mechanical system that possesses the novel
and paradoxical feature that, while the Hamiltonian is
supersymmetric, both the ground and the first excited
energy levels have unequal numbers of bosonic and
fermionic states. The resolution of this paradox is
contained in the supersymmetry algebra which turns
out to be somewhat different from the algebra usually
encountered in supersymmetric quantum mechan-
ics.2 4 If this feature generalizes to field theories, it
could provide a way to account for the observed asym-
metry in the low-energy spectrum of bosons and fer-
mions in the real world that does not necessitate a su-
persymmetry breaking in the way usually envisaged.

The quantum mechanical system that we shall study
is the supersymmetric CP' model5 modified by the ad-
dition of a supersymmetric Wess-Zumino (WZ) term. 6

For orientational purposes I point out that in the O(3)
sigma model, and therefore in the equivalent CP'
model, a WZ term corresponds to a background Dirac
monopole field. The N = —,

' supersymmetric version
of this model corresponds to a spin- —, particle with its
spin constrained to be tangential to the two-sphere
around the monopole. 9 We shall, however, principally
be interested in the N=1 supersymmetric version
here, although in the process we shall also solve the
N = —,

' version.
The CP' model has two complex fields Z, n = 1, 2,

and their superpartners, the two two-component com-
plex spinors Q '. a =1,2 is the "Dirac" index. The
fields satisfy the constraints ZZ = 1 and Zg = ZP = 0.
The Lagrangean of the CP' model is obtained by
dimensional reduction from the two-dimensional field
theory given in Ref. 5,

L = D,ZD, Z+ipDQ+ —,
' [(QQ) + (fy5$) (Qyo—p) —(QytQ) ].

where D, = 8, —ZB, Z and y = tTD, y'= tTD, and y'=i tTD2. (The subscript D indicates that the matrices act on the
Dirac index a). The supersymmetry transformations are

5Z =i'm/, pt[t = —'2ieZ (Qp)+ 2iyseZ (QysQ)+yse[D, Z —,'iZ Qy Q]——2iy~e[Z Qytfl. (2)

Following Ref. 7 the WZ term for the CP' model is i jdt Z 8,Z. The supersymmetric version is then easily
shown to be jdt(iZ $,Z+2p p) and its coefficient, m, is quantized —this is the usual Dirac quantization of the
monopole charge. The Lagrangean (1) with the WZ term can be rewritten with an auxiliary field & as

L =D,'ZD, 'Z+igD'P+ 4 [(PP) + (Py5$) —(Py~P) ] —2mB + mP P+ m, (3)

where D, = tl, —iA and A is determined by its equation of motion to be —', (iZ 8,Z+—P P —2m). To quantize the
system we proceed to work in the Hamiltonian formalism after going to the "temporal A =0 gauge. " Thus we
have the classical Hamiltonian

0= t)tZt)tZ —
4 [(44)'+ (Sy54)' —(Aye%)'] —tnt 0 —tn'. (4)

with Gauss's law as an additional constraint, iZ Q, Z+ p p = 2m.
Now, using Dirac's procedure for constrained Hamiltonian systems, ' we can set up the commutation and an-

ticommutation relations. There are some ordering ambiguities that arise in doing this. They can be resolved by
going to the m =0 case and then requiring that the usual supersymmetry algebra be satisfied. The details of the
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calculation will be presented elsewhere. " The result for the nonvanishing commutators and anticommutators is

[Z,Pp] =i(5I —Z Zp/2), [Zp, P ] =i (5$ —Z Zp/2), [Z,P~] = —iZ Z&/2, [Z,Pp] = —i (Z Zp/2),

[P,P&] = —iZ P&/2+iZ~P /2, [P,Pi] = —iZ PP/2+iZi P /2, [P,P~] = ,'i(—Z&P —Z Pi') —y |tip,

[P,Q~] =if Zp, [P,pi ] =if Zi, (Q, Q ) =5 (5$ —Z Zp),
~here I' is the momentum conjugate to Z . The su-
persymmetry charge g' is given by Q 'P, and the su-
persymmetry algebra for the m = 0 case is

(ga gtb) gabH [ga H] 0 (6)

where H = (PP +PP)/2 ——,
'

(Q oDQ) —', p —p 'W. e
can also define an angular momentum generator J'
satisfying [J',J'] =i e""Jk:

J'= ,' i ( Za'—P—Z o'P + i Q o'Q ) . (7)
We then recover the results of Davis, Macfarlane, and
van Holten'3 for the supersymmetric O(3) nonlinear
sigma model, namely, H= J2 and Zo'ZJ'=Q-Q —1.'4
Since [PP,H] =0 the eigenvalues n of PP are good
quantum numbers and can be used to label the states.
n can be 0, 1, or 2. To see this, go to a coordinate
patch where Z2e0. We can then express Qt in terms
of P2 by solving ZQ =0. Thus we are left with $2t and

I

Q2 as the two independent fermionic operators. If we
let i0, 0) be the bosonic "vacuum" state satisfying

i0, 0) =0 (i.e. , n =0), then $2i0, 0) = i1, 0) and
$22i0, 0) = i0, 1) are two fermionic states that have
n = 1, and $2/$0, 0) =

i I, 1) is a bosonic state having
n =2. The energy levels are given by j(j+1) withj~ in —li. The spectrum is as shown in Fig. 1.
There are two fermionic states of zero energy and the
rest of the energy levels have equal numbers of Bose
and Fermi states. Supersymmetry is unbroken be-
cause the ground state is annihilated by both g' and
Q2

We now turn to the case where m ~ 0. First consider
the simpler model with N= —,

' supersymmetry. This is
obtained by a consistent truncation of the N = 1

model: P2 =0 and in the supersymmetry transforma-
tions the parameter e is set equal to zero. We find in
that case

H= (g, g ) = (PP+PP)/2 —
4 (P P)2 —mP P —m(m+ 1) = J —m(m+ 1),

where J'= —, (Z o'P —Z o'P -+ —,p o'-p) and-Z o'ZJ'= pp-" + m = n + m. In this case n = 0, 1. Thus
H =j(j+ 1)—m ( m + 1), with j~

i m + n i and n = 0, 1. The corresponding spectrum is shown in Fig. 2. The
ground state is annihilated by g and the spectrum is manifestly supersymmetric.

Finally we turn to the case of real interest to us, namely, where me0 and N=1 supersymmetry. We find, fol-
lowing the same procedure as before,

(ga g&b) 5abH+ 2m [gaby&y ~thea]

[g',H] =0,

[H, Q Q] = [H, Q Q ] =0

[ gb y&y] gb [ gb y&ayc] fbagc

[—P crip —p~ o.ip ] —i
i +IJkyt ky

(9a)

(9c)

(9d)

(9e)

Here we have defined H to be that part of the right-hand side of (9a) that commutes with g Alternatively, we can
start with the Hamiltonian for the m = 0 case (i.e. , no WZ term) and add to it (with a minus sign) the extra piece
mP P that had appeared in the Lagrangean (3) due to the addition of the WZ term. Both of these procedures give
the same expression for the Hamiltonian:

H = (PP+PP)/2 —,' (P aD'P—)2 -', P P ——m—P Q
—m(m+1) = J —m(m+1),

j= 3
I
I

j =m+3

n=O

j= 2
j=1
j= 0

j= m+2
j= lTI+1
j=m n=O n=, 1

FIG. 1. N=1 supersymmetry and m =0. FIG. 2. N = ~ supersymmetry and m~0.
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(Q, Q ) ~0, 0) = (H + 2m y' y') ~0, 0) = 0.

We further find that

(Q', Q"I IO, I) =0,

(Qt, Q»~(1, 0) =2m ~I, O),
(12)

where the states ~0, 1) and ~1, 0) are as defined earlier.
From (12) we see that one of the supersymmetry
charges Q' annihilates ~0, 1) but not ~1, 0). It thus
pairs ~0, 0) and ~1, 0) into a supermultiplet but leaves
0, 1) a singlet. Similarly Q annihilates ~0, 1) but not
1, Q) and pairs it with ~0, 0). ~1, 0) and ~0, I) form a

doublet under the SU(2) group. We thus see that the
first excited level with its two fermionic states ~0, 1)
and

~ 1, 0) and the bosonic state (0, 0) do form a
representation of the superalgebra (9). The rest of the
states form supermultiplets in the usual manner. Thus
we have a situation where the Hamiltonian is super-
symmetric, yet both the ground and first excited levels
have different numbers of Bose and Fermi states.

If this phenomenon can be generalized to field
theories, it would be of interest, since, as mentioned
earlier, it would open up the possibility of constructing
realistic theories with supersymmetry breaking perhaps
playing quite a different role than the usual one of
splitting bosons from fermions. Thus, if for instance
expression (3) could be derived as the Lagrangean de-
fining the dynamics of the collective coordinates of a
soliton in an underlying supersymmetric field theory,
then Fig. 3 would reveal a spectrum of soliton states

with J' as in the m =0 case and satisfying Za-'ZJ'
+ m —1. Thus we get H=j (j +1)—m(m

+1), with j» ~n+m —1~. Thus for n=0, j» (m
—1~ and H» —2m, and for n= 1, j» ~m~ and
H»0. For n =2, j» ~m+1~ and H» 2m+2. This
is shown in Fig. 3. As announced in the introduction
both the ground and first excited energy levels have
unequal numbers of Bose and Fermi states.

I explain now why the spectrum in Fig. 3 is compati-
ble with supersymmetry. Properties of the spectrum
of a Hamiltonian are to be deduced from the algebra
obeyed by its symmetry generators. In the present
case this is given by Eqs. (9a) —(9e). Relation (9b) re-
quires in the usual way that states related by Q' have
the same energy —this is certainly true of the spectrum
shown in Fig 3. The crucial difference is in Eq. (9a)
where the right-hand side contains an extra piece in
addition to the usual Hamiltonian. These extra terms
are the generators of an SU (2) S U (1) acting on the
"Dirac" index a, as seen from Eq. (9d).' Using (9a)
we can calculate (Q, Q' ) and (Qz, Q ) acting on the
ground state ~0, 0) and we find that it is zero for any
value of m. Explicitly,

(Qt, Q")(0, 0) =(H+2mq "y')i0, 0) =0,

FIG. 3. N = 1 supersymmetry and m~0.

that naively does not appear to be supersymmetric. On
a more formal level it would also be interesting to find
the generalization of the Witten index for theories of
this type.
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