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Role of Irreversibility in Stabilizing Complex and Nonergodic Behavior
in Locally Interacting Discrete Systems
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Irreversibility stabilizes certain locally interacting discrete systems against the nucleation and
growth of a most-stable phase, thereby enabling them to behave in a computationally complex and
nonergodic manner over a set of positive measure in the parameter space of their local transition
probabilities, unlike analogous reversible systems.

PACS numbers: 05.90.+m

The dynamics of a statistical-mechanical system in
contact with a larger environment is often modeled as
a random walk on the system's state space (e.g. , kinet-
ic Ising model). If the environment is at equilibrium,
this random walk will be "microscopically reversible"
(its matrix of transition probabilities being of the form
DSD ', where D is diagonal and S symmetric), and
the system's stationary distribution of states will be an
equilibrium one (e.g. , canonical ensemble) defined by
a Hamiltonian simply related to the transition probabil-
ities. On the other hand, if the environment is not at
equilibrium, the system's transition matrix in general
will be irreversible, and the resulting nonequilibrium
stationary distribution may be very hard to character-
ize.

Though an irreversible system's distribution of
states is not simply related to the transition probabili-
ties, its distribution of histories is. More specifically,
the stationary distribution of histories for any stochas-
tic model, whether reversible or not, may be viewed as
a canonical distribution under an effective Hamil-
tonian on the space of histories, in which each confi-
guration interacts with its predecessor in time with an
"interaction energy,

" equal simply to the logarithm of
the corresponding transition probability.

In particular, we consider the case in which the
underlying stochastic model is a probabilistic cellular
automaton (CA), in other words, a d-dimensional lat-
tice with finitely many states per site, in which each
site, at each discrete time step, undergoes a transition
depending probabilistically on the states of its neigh-
bors. In this case'2 the stationary distribution of his-
tories of the CA is equivalent to the equilibrium statis-
tics of a corresponding generalized Ising model (GIM)
in 2+1 dimensions. This appears paradoxical, be-
cause CA's are known to be capable of complex,
nonergodic behavior even when all local transition
probabilities are positive, whereas the behavior of
GIM is generally simple and ergodic (a stochastic pro-
cess is "ergodic" if its stationary distribution is
unique). For example, a standard kinetic Ising model,
at a generic point in its temperature-magnetic field
parameter space, undergoes nucleation and growth of
a unique most-stable phase, thereby relaxing to a
stationary distribution independent of the initial

conditions.
Here we note the resolution of the paradox, and il-

lustrate an essential difference between reversible and
irreversible systems by characterizing the phase dia-
gram, equation of state, domain growth kinetics, and
equivalent (d+1)-dimensional GIM of one of the
simplest nonergodic irreversible CA, viz. , Toom's
north-east-center (NEC) voting model, The resolution
of the paradox lies in the fact that when a d-
dimensional CA is represented as a (d + 1)-
dimensional GIM, the parameters (coupling constants)
of the latter system are not all independent, but are
constrained in such a way as to cause the free energy
of the (2+1)-dimensional system to be identically
zero, no matter how the parameters (transition proba-
bilities) of the underlying CA are varied. It is there-
fore possible for irreversible systems such as the NEC
model to be nonergodic, and in particular to have two
or more stable phases, over a finite region in their
phase diagrams, whereas reversible systems can exhib-
it this behavior only over a subset of zero measure
consisting of points in the phase diagram where two or
more phases, by symmetry or accident, have exactly
equal free energy.

North east center m-odel, -and reasons for its nonergo
dicity. The NEC —model is one of a class of voting
rules for CA shown by Toom3 to be nonergodic in the
presence of small but arbitrary probabilistic perturba-
tions. The model consists of a square lattice of spins,
each of which may be up or down. The spins are up-
dated synchronously, with a spin's future state decided
by majority vote of the spins in an unsymmetric neigh-
borhood, consisting of the spin itself and its northern
and eastern neighbors. The rule just described is
deterministic; we consider two-parameter noisy pertur-
bations of the rule, in which a spin whose present
neighborhood majority is up, instead of going up with
certainty at the next time step, goes up with probability
1 —p and down with probability p; and a spin whose
present neighborhood majority is down goes down
with probability 1 —q and up with probability q. Alter-
natively, the noise may be characterized by its "ampli-
tude" p+ q, analogous to temperature, and its "bias"
(p —q)/(p+ q), analogous to magnetic field.

Because probabilistic CA typified by the NEC model
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are not microscopically reversible, not all the formal-
ism of equilibrium statistical mechanics can be applied
to them. In particular, the stationary probability mea-
sure p, (X) on configuration space cannot in general be
represented as the Boltzmann exponential of any local-
ly additive potential. However, a stable phase of a
probabilistic CA can still be defined in the thermo-
dynamic limit as a probability measure p, on the space
of configurations of the infinite lattice, that is (1) sta-
tionary under the transition rule, and (2) extremal in
the sense of not being expressible as a linear combina-
tion of other stationary measures. This is analogous to
the definition of a phase for Hamiltonian systems as a
measure p, which is extremal among measures that can
be obtained as the thermodynamic limit of the canoni-
cal ensemble under various boundary conditions. 5

When p and q are small and positive, no local transi-
tion is entirely forbidden; hence the model is ergodic
on any finite lattice (e.g. , an %-by-N torus). However,
Toom showed3 that for sufficiently small p and q, the
transition rate between the mostly up and mostly down
states of the entire system tends to zero with increas-
ing N, rendering the infinite system nonergodic, with
two stable phases, like a conventional Ising model
below its critical temperature.

When the noise is unbiased (p = q), the NEC sys-
tem behaves like an Ising model in zero field: There is
a critical noise amplitude at which the spontaneous
magnetization vanishes continuously. Where the NEC
system differs from equilibrium systems is in its
response to biased noise, e.g. , 0 & q & p & —,'. In an
equilibrium system, such a symmetry-breaking pertur-
bation (analogous to magnetic field) would cause the
system to become ergodic, by rendering it susceptible
to nucleation and growth of the more stable phase.
The NEC system, on the other hand, remains noner-
godic, with two stable phases, even in the presence of
biased noise, if the noise amplitude is small enough.
This difference in response to a symmetry-breaking
perturbation can be understood by comparing the
mechanisms by which the two systems suppress fluc-
tuations of the minority phase.

In a zero-field Ising system below its critical point,
as in any reversible system at a first-order phase transi-
tion, a flat interface between the two equally stable
phases must have zero mean propagation velocity.
Finite islands of the minority phase nevertheless
shrink because of surface tension, an island of radius r
shrinking with velocity —dr/dt proportional to I/r.
The NEC system's irreversibility, by contrast, allows a
flat interface to drift even when the noise is unbiased
(p = q), and this drift velocity depends on interface
orientation in such a way as to cause islands of either
phase to shrink at a rate —dr/dt roughly independent
of their radius. In both systems, a small symmetry-
breaking perturbation s adds a constant term ~ s to
dr/dt for islands of the favored phase. This is suffi-
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cient to render the Ising system metastable, by favor-
ing growth of islands larger than a certain critical ra-
dius ~ I/s; but in the NEC system, dr/dt remains neg-
ative for all r, and so the system remains stable.

The NEC system's interface motions are easiest to
understand in the case of zero noise. Here a 135' di-
agonal interface between up and down spins drifts
southwestward with unit speed, regardless of which
phase is on which side of the interface, because sites
just southwest of the interface, at each instant of time,
have neighborhood majorities dominated by their
north and east neighbors on the other side. On the
other hand, a vertical or horizontal interface in the
same system does not drift.

These motions enable the noiseless NEC system to
eliminate islands of either phase with a linear shrink-
age velocity —dr/dt independent of their size r. To
see this, consider an island of, say, up spins of arbi-
trary size and shape. Let an isosceles right triangle,
with the hypotenuse on the northeast, be cir-
cumscribed about the island, and let all other spins in
this triangle also be flipped up, so that we are consider-
ing a somewhat larger island of up spins of a particular
triangular shape. Because the NEC rule is monotonic,
the addition of further up spins to an island of up spins
cannot hasten its disappearance. Therefore, the life-
time of the circumscribed triangular island is an upper
bound on the lifetime of the original arbitrary-shaped
island. The fate of the triangular island in the noise-
less NEC system is quite simple: Its southern and
western borders remain fixed, while its northeastern
border closes in with unit velocity, eliminating the is-
land in time proportional to its original size I..

The same argument holds in the presence of noise,
whether biased or unbiased, because, if the noise am-
plitude is small enough, each of the interface velocities
will differ only slightly (linearly in p and q) from its
value in the noiseless system. Under these conditions,
an island of size r of either phase will disappear in time
proportional to r by differential motion of its borders,
the lifetime being longer for one phase than the other
if the noise is biased.

Phase diagram of the NEC system. —Numerical stud-
ies were performed on the NEC model with use of
cAM, a fast CA simulator. 6 Besides providing quanti-
tative data, cAM s real-time display was most helpful
in assessing qualitative features of the model.

The phase diagram shown in Fig. 1 was obtained by
finding pairs of noise parameters (p, q) such that a
large minority island of up to (25000 sites out of
total of 65 536 = 256 x 256 sites) neither grew nor
shrank on average, during runs of about 50000 time
steps. The two-phase region is bounded by a pair of
first-order transitions (solid curves terminating at the
critical point p = q = 0.90 + 0.003), on which one
phase becomes marginally stable, losing its ability to
eliminate large islands of the other. Beyond the two-
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FIG. 1. Phase diagram of the NEC system, for noise

parameters p and q, with amplitude = p + q and bias
= (p —q)/(p+ q).

phase region is a narrow metastable zone (demarcated 1 I I

on the right by dashed lines), in which large islands of
V)

the favored phase grow but small islands shrink. A lg

critical exponent of 3.0 + 0.4 was found for the vertical lQ two
width of the two-phase region as a function of noise phase
amplitude (p+ q) below the critical point. Other runs region
on one-phase systems with unbiased noise p = q yield-
ed the value P = 0.122 +0.01 for the exponent describ-
ing magnetization as a function of noise amplitude
below the critical point.

Besides being irreversible, the NEC model differs
from conventional kinetic Ising models in having syn-
chronous updating. However, preliminary runs in
which only a fraction ( —, to —„)of the spins are updat-
ed at each time step indicate that even a fully asyn-
chronous NEC model would have a qualitatively similar phase diagram. We also explored an analytically solvable
mean-field approximation to the NEC rule, based on the recurrence relation

R (m) = —1+ [p(1 —m) +3p(1 —m)2(1+m)+3(1 —q)(1 —m)(1+ m) + (1 —q)(1+ m) ]/4,

where R(m) is the magnetization at time t+1 as a function of that at time t. Here, too, the phase diagram was
similar, except that there was no metastable zone, and the critical exponents were —, (for the two-phase region
width) and —,

' (for P).
The equivalent (d+1) dimensi-onal Hamiltonian, and its free energy. We now—review the construction of an

equivalent (d+ 1)-dimensional Hamiltonian model for an arbitrary (in general irreversible) d-dimensional CA, '2
and show why the former can have multiple stable phases over a set of finite measure in the parameter space of the
latter. The possible time histories X(0),X(1), . . . , X(t) of a d-dimensional CA can be viewed as configurations
of a (d+1)-dimensional lattice with one boundary fixed at X(0), the initial state of the CA. The probability
P (X(0),X(1), . . . , X(t) ) of such a history may be expressed as the product

P (X(1)/X(0) )P (X(2)/X(1) ) . P(X( t)/X(t 1)), —
where P(X(l+ I)/X(l) ) denotes the conditional probability for the CA to be in state X(l+ I) at time t+ I given
that it was in state X(i) at time i.

By defining

H(X( t + 1),X( i) ) = —ln [P(X(i+ 1)/X(i) ) ],
we cast the history probability in the familiar form of a Boltzmann factor (taking kT = 1):

P (X(0),X(1), . . . , X ( t) ) = exp —XH(X (i + 1),X(i)),
i=0

with H playing the role of an effective Hamiltonian
coupling adjacent d-dimensional time slices. All prop-
erties of the CA can thus be expressed as canonical-
ensemble averages of the (d+1)-dimensional system
defined by Hamiltonian H. The (d+1)-dimensional
model has the remarkable feature8 that its free energy
is identically zero regardless of the CA s initial condi-
tion or transition probabilities. This follows from the
normalization of these probabilities [for each X(i), the
sum over X(i+1) of P(X(i+1)/X(i)) must be 1),
which in turn implies that the (d+1)-dimensional
partition function is 1. In the thermodynamic limit
any stable phase of the d-dimensional system is a
stable phase of the (d+1)-dimensional system; there-
fore, if a d-dimensional CA has multiple stable phases,
its corresponding ( d + 1)-dimensional Hamiltonian
model will also, all with zero free energy.

The preceding argument holds whether X(0),

! X(1), etc. , represent time steps of a synchronous
model, or discrete-time snapshots of an asynchronous
(master equation) model evolving in continuous time.
However, in the synchronous case, because transitions
at all sites in the same time slice are independent, the
equivalent Hamiltonian is of a generalized Ising form,
being a sum of local terms H(y, x) = —inP(y/x),
where P(y/x) is the conditional probability that a site
will be in state y at time t+ 1, given that its neighbor-
hood was in state x at time t. The normalization con-
straint, viz. , that for each x, the sum over y of P(y/x)
be 1, restricts the GIM to a lower-dimensional surface
in the parameter space of its coupling constants, on
which the free energy is zero.

In the case of metastable phases the (d + 1)-
dimensional free energy per space-time site is not 0
but —ln(1 —I ) =I, where I is the nucleation rate
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for transitions out of the phase. This result, whose
derivation will be given elsewhere, may be explained
heuristically by saying that the expected number of fu-
tures per present is 1 in a stable phase and 1 —I in a
metastable phase, if we exclude futures not belonging
to the phase. We can now summarize the unusual
behavior of the (d+1)-dimensional free energy of a
nonergodic irreversible system such as the Toom NEC
model. Throughout the two-phase region of parameter
space, the free energy of both phases is identically
zero. Beyond this region, the free energy of the stable
phase remains zero, while the other phase's free ener-
gy lifts off very smoothly from zero, as
I'=exp( —con st/ s '), where s ( & 0), is the dis-
tance in parameter space from the first-order phase
boundary.

Irreversibility and complexity The.—relation of irrever-
sibility to complexity has been extensively studied,
especially in chemical reaction-diffusion systems. 9

The "dissipative structures" developed by such sys-
tems far from equilibrium exhibit macroscopic space-
time ordering which persists over a set of positive
measure in parameter space, but because the local in-
teraction lacks the spatial asymmetry of the NEC rule,
these systems remain ergodic in the thermodynamic
limit. In other words, for a generic choice of parame-
ters, one dissipative structure is stable, and the others
are metastable. A closer chemical analog to the NEC
system's generic nonergodicity can be seen in the
"once for ever" selection exhibited by stirred (i.e. ,
mean-field) nonlinear autocatalytic reaction systems. 'o

Probably the most comprehensive kind of complexi-
ty of which cellular automata or other discrete systems
are capable is the capacity for universal computation.
A computationally universal system" is one that can
be programmed, through its initial conditions, to simu-
late any digital computation. Computational universal-
ity of course can only occur in a nonergodic system:
In a computationally universal system, not only does
the indefinite future depend on the initial condition,
but it does so in an arbitrarily programmable way. For
example, the computational universality of the well-
known deterministic CA rule "life" implies that one
can find an initial configuration for it that will evolve
so as to turn a certain site on if and only if white has a
~inning strategy at chess. Universal automata can be
programmed to mimic arbitrary kinds of nontrivial
behavior observed in other systems, e.g. , the scale in-
variance of the Ising model at its critical point.

The property of computational universality was orig-
inally demonstrated for systems (e.g. , Turing
machines, deterministic cellular automata) rather un-
like those ordinarily studied in mechanics and statisti-
cal mechanics. Later, the property was demonstrated
for certain noiseless classical mechanical systems'
such as hard spheres with appropriate initial and
boundary conditions. Very recently, the computa-
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tional universality has been shown to hold for certain
noisy, locally interacting systems, i.e. , irreversible CA
in which all local transition probabilities are positive.
Notable among these is the three-dimensional CA of
Gacs and Reif, '3 which uses the NEC rule in two of its
dimensions to correct errors in an arbitrary computa-
tion being performed along the third dimension.

Though all universal automata are equivalent in the
computations they can perform, there may still be
qualitative differences among them in the density of
initial states that lead to nontrivial computations.
These differences need to be better understood before
one can make the tempting assertion that "self-
organization" like that observed in nature is a spon-
taneous tendency of locally interacting irreversible sys-
tetns, on a set of positive measure in the space of their
transition probabilities and initial conditions. Charac-
terizing the generic behavior of homogeneous locally
interacting systems capable of universal computation
is, we believe, the central problem in what might be
called the new field of discrete computational statisti-
cal mechanics.

We wish to thank Peter Gacs for helpful discussions
during all phases of this work, especially for bringing
Toom's models to our attention and emphasizing the
robust nature of their nonergodicity, compared to that
of the Ising models with which we were familiar.

~a~Present address. Boston University, 111 Cummington
Street, Boston, Mass. 02215.

'I. G. Enting, J. Phys. C 10, 1379 (1977).
E. Domany and %. Kinzel, Phys. Rev. Lett. 53, 311

(1984) .
A. L. Toom, in Multicomponent Random Systems, edited

by R. L. Dobrushin, in Advances in Probability, Vol. 6
(Dekker, New York, 1980), pp. 549-575.

4P. Gacs, University of Rochester Computer Science
Department, Technical Report No. 132, 1983 (to be pub-
lished).

sYa. G. Sinai, Theory of Phase Transitions: Exact Results
(Pergamon, New York, 1982), pp. I —10.

6T. Toffoli, Physica (Amsterdam) 10D, 195 (1984).
7E. Domany, Phys. Rev. Lett. 52, 871 (1984).
8L. S. Schulman and P. E. Seiden, J. Stat. Phys. 19, 293

(1978).
9G. Nicolis and I. Prigogine, Self Organization in -Nonequi

librium Systems (Wiley, New York, 1977); H. Haken, Syner
getics (Springer-Verlag, New York, 1983), 3rd ed.

tOM. Eigen and P. Schuster, The Hypercycle (Springer, New
York, 1979).

ttS. Wolfram, Rev. Mod. Phys. 55, 601 (1983), and refer-
ences therein.

~2E. Fredkin and T. Toffoli, Int. J. Theor. Phys. 21, 219
(1982); N. Margolus, Physica (Amsterdam) 10D, 81—95
(1984).

t3P. Gacs and J. Reif, in Proceedings of the Seventeenth
LCM Symposium on the Theory of' Computing, Providence,
Rhode Island, 1985 (Association for Computing Machinery,
New York, 1985), pp. 388—395.


