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A new and quite tractable model for spreading phenomena is proposed, which contains as a spe-
cial case the Eden model and a model for epidemics. Two exponents are defined, one static and
one kinetic ("growth"). The surprising feature is that the kinetic exponent can be continuously
tuned while the static one does not change. Thus the dynamic universality classes are quite independent

of the static one Th. is is the first one-cluster growth model showing dynamic universality classes un-

related to static ones and thereby yields insight into a generic feature for growth models.
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How does a disease (fluid, etc.) "spread" through a
randomly heterogeneous material'? This simple ques-
tion is of relevance to a wide range of disciplines, rang-
ing from epidemiology, oncology, and cardiovascular
physiology on the one hand to signal propagation and
network mechanics on the other. In this work, we pro-
pose a model for such "spreading phenomena" that is
simple but has a rich range of behavior. Using Monte
Carlo simulations, we find nontrivial values of both
static and kinetic exponents. Moreover, we find that
the dynamics universality classes are independent from
the static universality classes. This property seems to
be generic for a wide class of growth models.

For specificity, we consider a square lattice. Each
site can be empty or can be occupied by three types of
particles that we shall call sick (S), immune (I), and
growth (G). At time t =1, place an S particle at the
origin and occupy the four nearest-neighbor (nn) sites
with G particles. ' At time t =2 any of the G particles
is chosen randomly and converted into an S particle
with probability p or an I particle with probability 1 —p.
If an S particle was created again all of its not-yet-
determined nearest neighbors become G particles and
the time is increased by one. The infection spreads
(i.e., the cluster grows) by the successive conversion
of a fraction p of the G particles into S particles, and
after t time steps a large ramified tumor (cluster) has
been formed. The static properties of this cluster are
in the same universality class as percolation, since the
process of randomly making a site into an S or I particle
with weights p or 1 —p is the same as for percolation.
The kinetic or "growth" properties need not be the
same, since the statics is a function of only the final
product (a large ramified cluster), while the kinetics is
a function of hotv the final product is reached (the spa-
tial sequence in which the cluster sites are added).

The Leath2 method is the most widely used and ac-
cepted method of cluster growth; in this classic ap-
proach, one grows a cluster by first considering the
first chemical shell —the set of all sites that may be

connected to the origin by a single ("chemical" ) bond.
One randomly converts a fraction p of these to cluster
sites (S particles) and blocks the rest (I particles).
Then one proceeds to the next chemical shell and re-
peats the same process. At any given instant of time,
all sites under consideration are on the same chemical
shell.

The purpose of this Letter is to propose an altogeth-
er different growth kinetics —not because it is more ef-
ficient than the Leath method in arriving at the final
product, a percolation cluster, but because the kinetics
depends continuously upon a parameter so that the ac-
tual cluster growth process can be tuned. 4 In contrast
to the classic "shell-by-shell" growth kinetics of
Leath, we choose the next growth site to be tested
from a probability distribution P (r), where r is the dis-
tance from the most recently added sick particle and5

P(r) —1/r .

Pictorially speaking, we can imagine the infection
spreading by an infected butterfly who flies from one
G site to the next, randomly choosing the next from
the distribution (1).6 Representative clusters for
a = 0, n = —4 (long range), and ot = + 8 (short range)
are shown in Fig. 1. For the short-range P(r), the
next sick particle tends to be close by while in the
long-range case it tends to be far away. Accordingly,
for o. negative the G sites are largely localized on the
external surface, while for a positive they occur on the
internal surface as well.

How can one quantitatively describe this large tu-
mor? The static (geometric) properties are reflected
in the fractal dimension, df, which governs how the
tumor mass increases with its radius of gyration,

M=s —A f.d (2a)

For p = 1 (no immune particles), we expect that df ——d
since our model reduces to the much-studied Eden
model. For p & 1, we also expect that 1&= d since a
nonzero fraction of our realizations will continue to
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FIG. 1. Typical tumors, each of roughly 1500 sites, for (a) n=0, (b) n= —4 (long range), and (c) n= + g (short range) at
p = p, . The cross denotes an immune particle (blocked site), while the dot denotes a growth particle (neighbor of the growing
tumor that can be infected). The seed of the clusters is denoted by an asterisk.

(2b)
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grow forever. Indeed, the ultimate connectivity of the
5 particles is identical to the connectivity of occupied sites
in percolation, since both are randomly present with
probability p. For the same reason, at p, we expect df
to assume the value 4, corresponding to percolation
clusters. 7 This reason, to be precise, is that after a
very long time the cluster perimeter has a vanishingly
small fraction of growth sites —since, as we shall short-
ly see, the fractal dimension of the growth sites is dis-
tinctly smaller than the fractal dimension of the perim-
eter. In the regions of the cluster where there are no
growth sites left [such regions are already apparent in
the relatively small 1500-site clusters of Figs.
1 (a)—1 (c)] the clusters must have precisely the
statistics —including fractal dimension —of percolation
clusters since each of the sites has been occupied or
been blocked once and only once, independently of the
other sites (since the process is random by definition) .
Henceforth p =p, unless otherwise stated.

In addition to the static properties of this growth pro-
cess, we wish to describe quantitatively the kinetic
properties. To this end, we note that the 6 sites them-
selves form a "volatile fractal, "8 whose identity
changes with time. Its fractal dimension is given by
dG, where

6 —A~ —sG f.d d /d

dG/df = (dH —I)/d~= 9", =0.396. (3)

This argument obviously breaks down for o. above
some limiting value o.„ i.e., for sufficiently short-
range P(r). To estimate o.„consider the mean length
of one jump, r = fdr rP(r). Only if r ~ can we

For n ~ 0 we find that dG/df ——0.40+ 0.015 for p =p„
20% smaller than the value dG/d& ——0.493 recently
found for percolation clusters grown by the ant
mechanism. Accordingly, the growth mechanics of
what are ultimately percolation clusters depends sensi-
tively on the rules by which the clusters are grown.

The variation of dG/df with n is shown in Fig. 2.
The result for the long-range limit might be interpret-
ed by the following simple argument. ' For o. negative
the G particles form a subset of the hull of the fractal;
by definition, the hull is the set of fractal sites that
form the entire external perimeter [see Figs. 1(a) and
1(b)]. If the G sites were randomly chosen from the
hull, then dG = dH, where dH is the fractal dimension
of the hull. In fact, for long-range P (r), the G parti-
cles are biased to be at a maximum distance, so that
they generally lie at the extremities of the hull. Hence
we expect that the 6 particles more nearly form a frac-
tal cut of the hull, and d~ =dH —1. Using df = —,", and
the recent result" dH = 4, we then have



VOLUME 55) NUMBER 7 PHYSICAL REVIEW LETTERS 12 AUGUST 1985

cl Q

dF
06-

NIr, s)
s=800

05-

i
0.4 'i' '"

T 0
50 'l00

q
150

I

12
I

16

FIG. 3. The number X(r, s) of G particles at a distance r
from the seed of a growing s-site tumor, for s = 800, 2000,
and 4000; o. = 0.

FIG. 2. Dependence on the parameter n of dG/df. The
data for 0. =0, n= —4, and o. = +8 are based on 20000,
8000, and 8000 Monte Carlo runs, respectively, while for
the other 0, values 2000 runs have been made. In all cases,
clusters have been grown up to 4 & 10 5 particles.

jump to the extremities of a huge cluster, which im-
plies that n, = 2. From Fig. 2 it appears that n, = 2 is
indeed the limiting value of o. above which the long-
range result dG/df =0.4 fails. This argument may be
more general than for the 0. =0 case of our model,
since its prediction also holds for a fractal set of fron-
tier sites of the Eden model generated on a
percolation-cluster substrate. '

At the present time we have no argument to support
our finding that dG/df approaches a constant value
0.55 + 0.02 for the limit of short-range interactions. It
is an intriguing result, however, since it implies that
dG approaches unity in the limit of large o. . Note that
our error bars exclude the possibility that our short-
range value is the same as for another "short-range"
model, the de Gennes "ant in a labyrinth" problem
(for which dG/df =0.49). Thus also in the short range-
limit the growth process is in a different kinetic universality
class than the diffusi ve growth process.

We found the probability distribution N (r, s) giving

the number of G particles at a distance r from the seed
of the tumor. A representative example (o.=o) is
shown in Fig. 3. We found that the mean (r ) and also
the width 6 (variance) scale with tumor mass with the
same power. This finding is in agreement with the
case of the diffusive growth process, in contrast to the
case of diffusion-limited aggregation (DLA) where the
width of the distribution of "growing sites" increases
less quickly than the mean. ' We also confirmed that
N (r,s) obeys scaling in the two active parameters r and

—1/d —1/ds: N (r, s) = Gs N (rs ) (Fig. 4). For dif-
ferent values of n, N(r, s) cannot be made to collapse.
The scaling function N (x) depends strongly on n and

cannot generally be described by a simple Gaussian, as
can be seen by comparison of the location of the maxi-

ma of N (x) with (r )s, denoted by an arrow in
—1/df

Fig. 4. Moreover, we find for 0, ) 4 that growth parti-
cles are deposited near the starting point of the walk,
which is nonzero even at large times. This is in accord
with our understanding that, in the short-range limit,
the butterfly prefers to explore new territories, leaving
behind untouched growth particles buried deep inside
the cluster.
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FIG. 4. The probability distribution for (a) n = —4, (b) n = 0, and (c) 0. = 8, scaled so that all curves collapse upon a single
curve (s = 800, triangles; s = 2000, circles; s = 4000, squares).
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In summary, then, we have introduced a new "epi-
demic" growth model, characterized by a parameter a
that determines the mean distance between successive-
ly infected tumor sites. We found that the static ex-
ponents are independent of a, but that dynamic ex-
ponents depend strongly on o. , our model is like a clus-
ter growth analog of the Fisher-Ma-Nickel model of
long-range spin-spin interactions. %e studied the spa-
tial distribution of growth sites X(r,s) and found that
a single length is sufficient to describe this function,
unlike the situation in DLA. '
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