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We have studied the shape of large clusters in the lattice-animal, percolation, and growing-
percolation models. By calculating the radius of gyration tensor we find that in these models the
clusters have an anisotropic shape. The results suggest that the critical droplets in related isotropic
equilibrium models, such as the Ising model, may also be anisotropic. We have also determined
the leading nonanalytic correction-to-scaling exponent by analyzing the anisotropy data and find
that for percolation in two dimensions 0 = 0.47.

PACS numbers: 05.50+q, 64.60.—i

In this Letter we address the following question: Is
the shape of random scale-invariant clusters isotropic'?
The answer to this question is of considerable interest
from both practical and fundamental points of view.
The behavior of a wide variety of condensed systems,
from polymer solutions and colloidal suspensions to
smoke and dust, is determined by the conformation of
the large clusters or aggregates that they are made of.
Filtration, sedimentation, adsorption, transport, and
rheological properties of such systems depend crucially
on whether these clusters have a spherically symmetric

shape or are anisotropic. ' The existence of structural
anisotropy in systems with isotropic coupling would
represent a puzzling anomaly requiring theoretical ex-
planation.

The basic interest in cluster shapes, however, stems
from the fact that the classical droplet models3 in
theories of phase transitions are based on the assump-
tion of spherically symmetric clusters. In addition,
models allowing only for spherical droplets contain an
essential singularity at first-order phase transitions. 3

Theoretical studies2 4 indicate that the details of this
singularity are modified if deviations from sphericity
are taken into account. Moreover, being the ratio of
two diverging lengths, anisotropy is a quantity which is
independent of the leading exponent and could allow

an unbiased determination of the correction-to-scaling
exponent. According to the scaling theory of continu-
ous phase transitions, the ratio of the amplitudes of
two quantities diverging with the same leading ex-
ponent at the critical point is universal. Since anisotro-
py is the ratio of two such quantities, on the basis of
the scaling theory, it is expected to be a universal
parameter.

In this Letter we report the results from the investi-
gations of the cluster shapes in three models: lattice
animals, 5 percolation clusters, 6 and growing percola-
tion clusters. 7 8 Lattice animals represent clusters in
an equilibrium model away from the critical point
(T=~), percolation clusters at the percolation
threshold are the sin quo non of the critical clusters in
phase transitions, and growing percolation clusters
represent a kinetic process which is closely related
both to equilibrium models (e.g. , percolation) as well
as to a new class of kinetic aggregation phenomena
(e.g. , diffusion-limited aggregation) .

The anisotropy of a given X-site cluster can be
determined from its radius of gyration tensor R;~2

(ij =x,y in d = 2 ), by diagonalization of the tensor
and calculation of the principal radii of gyration. The
anisotropy Az of an X-site cluster is then defined to
be the ratio Rtv;„/Rrt, „, where Rrt;„and R~
are the smaller and the larger eigenvalues of
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the radius of gyration tensor, respectively. The quantity 3& when properly averaged over all clusters of size % is
denoted by (Aiv) and is an estimate of the anisotropy of ¹iteclusters in the ensemble. We allow for the leading
nonanalytic and analytic correction to scaling and write the asymptotic form of the principal radii of gyration as

(R„'.) = «.N'"(1+a.N '+-b.N '+-. . . ), (1)
w = min or max. The coefficients r, a, and 6 are independent of X, v is the leading scaling exponent and is
equal to the inverse of the fractal dimension, X is the leading nonanalytic correction-to-scaling term, and %
represents the leading analytic correction-to-scaling term. Using expression (1) we can write the anisotropy as

(Aiv) = (Riv;„/Riv, „)=A [1+(a;„—a,„)N + (b;„—b,„)N +. . .], (2)

where (. . .) denotes an average over all N-site clus-
ters.

Lattice animals The.—statistics of connected clusters
of sites or bonds on regular lattices —commonly re-
ferred to as lattice animals5 —has been a subject of
considerable recent interest because of its applications
in a variety of diverse fields including the theory of
chemical graphs, the cell-growth problem, homogene-
ous turbulence in fluids, spinodal decomposition, and
dilute branched polymers.

An effective method for a systematic study of the
asymptotic scaling behavior of lattice animals is the ex-
act series enumerations. Recently, Privman and Fish-
er'0 (PF) have developed a technique for the deter-
mination of the correction-to-scaling exponents using
exact-series-enumerations data based on cancellation
of the leading nonanalytic terms. This method has
been successfully applied to the analysis of the radii of
lattice animals and percolation clusters. " The PF
method is particularly well suited for the study of the
atltsotroPy because tllc (Aiv) set les 0«ilP contatns
correction-to-scaling terms and allows an unbiased cal-
culation of the exponents. We have enumerated all
site animals of up to size 15 on a square lattice and
have determined (R~2;„), (Rg,„),and (A~). Us-
ing the PF method we first analyzed the (Riv;„) and
the (Rg,„) series assuming the scaling form (1)
with v = 0.640 +0.005." The resulting biased estimate
of 0 = 0.88 + 0.06 for the leading nonanalytic
correction-to-scaling exponent agrees with the previ-
ous estimate" for () based on the radius of lattice an-
imals. As noted above, anisotropy does not involve
the leading exponent and the analysis of the (Aiv)
series in principle provides an unbiased estimate of ().
In applying the PF method to the series for (Aiv) we
found that the correction-to-scaling exponent is
1.01 +0.04. This result implies that either the ampli-
tude of the N term in (2) vanishes or is very small,
and in this way only the leading analytic correction-to-
scaling term remains. Since the N ~ term does not
appear in (2), the asymptotic value of the anisotropy,

, can be simply estimated from the intercept of a
plot of (Aiv) against 1/N. Such a plot is shown in Fig.
1, from which we estimate that for lattice animals

= 0.29. This result indicates that large two-
dimensional lattice animals have an anisotropic shape,
even though the model is purely isotropic.
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FIG. 1. Dependence of the average anisotropy of lattice
animals, (A~),„;,and lattice animals without loops (trees),
(Aii) „„,in two dimensions, on 1/N, where N is the number
of sites in the cluster. Extrapolation to X ~ gives ap-
proximately the value 0.29 for the anisotropy of cluster
shapes in both models. The fluctuation of the anisotropy of
lattice animals, o. (A~),„;,is also plotted against 1/N.

In addition to lattice animals, we have enumerated
all animals without loops (i.e. , trees) of up to size 16
and have applied exactly the same analyses to these
series. We found that if we use the same v as for lat-
tice animals the radius of gyration, (Ri2v), and the
principal radii of gyration, (Rg;„) and (Rg,„),
give the same correction-to-scaling exponent 0. This
is further support for the universality of animals with
and without loops. 5 Similarly, the analysis of the
series for the anisotropy of trees shows that again the
N ~ term in (2) drops out. A plot of (3„) vs 1/N for
trees is also shown in Fig. 1. From this figure we can
assume that animals with and without loops have the
same degree of anisotropy. We have also calculated
the fluctuations of the anisotropy, by determining
o. (Aiv), which is the standard deviation of the quantity
Ri22i;„/Rg „. The results for lattice animals are
shown in Fig. 1, where it can be seen that the fluctua-
tions of the anisotropy are essentially independent of

Percolation. —The study of percolation clusters pro-
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vides an additional possibility to investigate the shape
of random fractal clusters. A simple way to generate
percolation clusters is a process originally proposed by
Alexandrowicz7 and later in a modified form by
Grassberger. 8 The process is started with a seed parti-
cle (occupied site) on a lattice. One of its nearest
neighbors (perimeter sites) is chosen randomly, and if
a random number r attributed to this site is less than a
previously fixed parameter, p, this empty site is occu-
pied and becomes part of the growing cluster. If r & p,
the given perimeter site is discarded and is not con-
sidered in the future as an available perimeter site. In
the next step one of the available perimeter sites of the
new cluster is considered for occupation, and so forth.
It is possible to generate very large clusters with use of
this method and therefore extrapolation of the results
to N ~ is expected to yield reliable estimates for
the anisotropy.

The above process can go on indefinitely if our seed
particle happens to belong to an infinite cluster, or ter-
minate at a particular cluster size if the number of
available perimeter sites becomes equal to zero. Ac-
cordingly, two kinds of percolation clusters can be gen-
erated by this method. The fractal dimensions of the
growing percolation clusters (nonequilibrium clusters
which can grow further because of the available perim-
eter sites) have been shown to be the same as the
equilibrium percolation clusters. 8'~ Clusters which
are obtained when the growth process terminates are
ordinary equilibrium percolation clusters; therefore, the
the use of the Alexandrowicz method allows us to
study the shape of both equilibrium and nonequilibri-
um percolation clusters.

In order to get a good estimate of the anisotropy of
an ¹itegrowing percolation cluster, (A~) g„, we have
generated 30000 clusters of up to 2500 sites each us-
ing the Alexandrowicz method for p = p, = 0.5928,
where p, is the site percolation threshold on the square
lattice. The anisotropy was determined for selected
values of N from the ratio of the eigenvalues of the ra-
dius of gyration tensor. We also calculated the fluctua-
tions of the anisotropy, o.(Az) g„. The results are
presented in Fig. 2. If we plot (Az) g„vs N the
data lie along a straight line, indicating that the ex-
ponent 0 in the correction-to-scaling term of the ex-
pression for the anisotropy, (2), has a value 0 = 0.47.
We have also plotted log( (A~) g,

—(A ) ) against
log(N). The slope of the straight line drawn through
the data provided another estimate for the correction-
to-scaling exponent, giving 0 = 0.47. While (Az)
contains a nonanalytic correction-to-scaling term the
fluctuations in (A~) g, seem to be independent of N
(see Fig. 2). The actual values 3 g„=0.485 and
a (A g, ) = 0.18 suggest that the shape of large grow-
ing percolation clusters is typically anisotropic and the
fraction of the nearly circular clusters is relatively
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FIG. 2. The average anisotropy of equilibrium ((A~),~)
and growing ((A~)~„) percolation clusters in two dimen-
sions as a function of N ~, where 0 is the correction-to-
scaling exponent. We used 0=0.47 which gave the best
straight-line fit to the data. The fluctuation in the anisotropy
of growing percolation clusters, a. (A~)~„ is also plotted
against N

small.
In the next series of simulations 80000 equilibrium

percolation clusters of sizes 10( s ( 100 were gen-
erated for p = p, with use of the same method and cal-
culation of the anisotropy of a cluster after the growth
of the given cluster had been terminated. The statis-
tics was not as good in this case as it was for the grow-
ing percolation clusters because the data obtained for a
cluster contributed to the statistics only for the particu-
lar size at which the growth stopped. Correspondingly,
our results, presented in Fig. 2, show a larger uncer-
tainty. On the other hand, we can conclude from Fig.
2 that the equilibrium clusters are more anisotropic
than the growing percolation clusters and the very
large ordinary percolation clusters have an anisotropy
approximately equal to 0.4.

A long-standing controversy exists in the studies of
corrections to scaling in percolation in two dimensions,
because existing estimates of 6 spread over two dif-
ferent ranges. '3 The lower values of 0=0.47—0.49
have been suggested by the generating-function and
the PF-method analyses of series for various percola-
tion properties. '3 The higher range of 0 = 0.6—0.7 has
been obtained in other numerical studies. '" According
to the Aharony-Fisher theory, ' the higher value is a
next-to-leading correction term arising from the mix-
ing of nonlinear scaling fields, and is given by
0' = 1 —a- = —,", = 0.601. . . , where o- is the percolation
gap exponent. The result 0 = 0.47 obtained here sug-
gests that the lower value of 0 is the leading nonanalyt-
ic correction-to-scaling exponent.
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In addition, growing percolation and equilibrium
percolation seems to have the same value of the
correction-to-scaling exponent. This is perhaps not
unexpected in view of the fact that the leading ex-
ponent (i.e., the fractal dimension) is known to be the
same in the two models. '

Our results concerning the anisotropy of cluster
shapes are both novel and interesting, because in con-
trast to certain models in which the clusters are trivial-
ly isotropic or anisotropic, there is no explanation
available for the presence and magnitude of anisotropy
in the lattice animal, percolation, and growing-
percolation models. For example, diffusion-limited
aggregates are expected to be isotropic because of the
growth mechanism which is based on a spherically
symmetric diffusing field. On the other hand, large
aggregates in the cluster-cluster aggregation model are
formed by coalescence of, say, two large clusters and
are anisotropic. '6

The existence of anisotropic cluster shape in per-
colation is significant because of the close connection
between this model and a variety of other models ex-
hibiting critical behavior. Since percolation is the
q 1 limit of the q-state Potts model, '7 we expect
that the critical droplets in the Ising model (and the
Potts model in general) are not spherically symmetric
as well. Moreover, there are many other isotropic
models in which the anisotropy of the cluster shapes
could also be investigated.
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