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Wave Functions Derived by Quantum Modeling of the Electron Density
from Coherent X-Ray Diffraction: Beryllium Metal
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A single-determinant experimental Be hybrid-atom wave function is obtained by the quantum
formalism of Clinton and Massa, from Larsen and Hansen's single-crystal x-ray diffraction data.
Physical properties calculable from this wave function are unobtainable from current methods of
diffraction analysis. The least-squares fit using all experimental data gives an 8 factor of 0.0018,
and quantitatively describes charge redistribution due to crystal bonding in agreement with ab initio
calculations.

PACS numbers: 71.10.+x, 71.45.—d

This paper demonstrates that an approximate
although quantum mechanically valid wave function
can be obtained from experimental x-ray diffraction
data. Such an experimental wave function allows the
quantitative calculation of all physical properties,
within the approximations incorporated in the wave
function, by use of the usual rules of quantum
mechanics. This includes, for example, properties
such as the kinetic energy or Compton momentum
profile, which are not obtainable from existing
methods of diffraction analysis. Additionally, the
wave function s orbital-basis contributions provide a
quantitative deconvolution of the total crystal electron
density into the fundamental components responsible
for bonding. Indeed, the x-ray orthonormal orbital
model of crystallography, ' here applied to the case of
beryllium, 2 demonstrates a powerful new potential in
density analysis of x-ray scattering data.

The formalism of Ref. I can, in principle, be applied
to yield orbitals and a Slater determinant characteristic
of the full crystal. Here, however, we apply the for-
malism in a restricted sense, obtaining orbitals and a
Slater determinant characteristic of D3„-hybridized Be
atom fragments, which, placed at their lattice posi-
tions, define the "exact" electron density of the Be
crystal. This is a compromise of the crystal-field sort
in that we attempt to represent the local fragments in
the crystalline environment but. give up any represen-
tation of the extended system that is Bloch —wave-
vector dependent. Of course, those quantities deter-
mined solely by the density which is reproduced exact-
ly, by construction, from fragment superposition, are
calculable. The atomic hybrid model represents the
next step in wave-function complexity beyond the
spherical-atom ground-state wave function commonly
used in x-ray diffraction analysis. The main features

of our calculation, which results in the valence orbital
and density matrix of Be, are as follows. The orbitals
@ of a Be hybrid-atomic fragment are obtained as a su-
perposition of "atomic" basis functions P. In this
basis, the density matrix is p(r, r') =2TrPQ(r)P (r').
The population matrix P is treated as a set of experi-
mental parameters chosen to fit the x-ray scattering
factors as closely as possible, in a least-squares sense.
In order to ensure N representability, i.e. , that the or-
bitals qb and the single determinant of those orbitals
are recoverable from p(r, r'), it is imposed as a con-
straint that the population matrix be a normalized pro-
jector, i.e., P = P and Trp =%. Any procedures
equivalent to that described above constitute a quan-
tum model of the crystallographic experiment. '

The form of the x-ray structure factor used in our
calculation is just the ordinary expression for Be avail-
able from the The Internationa/ Tables of Crystal!ogra
phy, 3 with the important difference that the standard
spherical-atom scattering factor commonly used is here
replaced with a more general scattering factor
2TrPfa„expressive of the quantum mechanical na-
ture of the crystal electron distribution. The matrix
fa, contains as elements Fourier transforms of basis
products. The basis used has core and valence com-
ponents. (The model discussed here for beryllium
may be expected to also apply for larger systems. An
increased number of core orbitals will not affect the
method adversely, as these may be obtained from
atomic Hartree-Pock calculations, so long as the core is
not much affected by crystallization. With reference
to increased numbers of valence orbitals, the formal-
ism used here carries over in the same way so long as
the number of data still exceeds the total number of
model parameters. This will be true in many interest-
ing systems as the number of x-ray data roughly scales
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It is to be realized that the effects of crystal bonding
on the atomic fragments are preeminently reflected in
just such features of the hybrid valence orbital. More-
over, every quantum property expectation value (o)
of the fragment is available from its orbitals (within
the single-determinant restriction, and will conform to
the usual bounds implied by such an approximation)
since (o) =2Tr(g~o ~qh). (Here o is at most a sum of
one-body operators. Although two-body operator ex-
pectation values assume a different form than that in-
dicated here, in a single-determinant approximation
they too are available from the orbitals. ) From the or-
bitals flow all expectation values, but not from the
density alone. Whereas the methods of accurate dif-
fraction analysis currently and commonly in use yield
an analytic expression for the density alone, not relat-
ed to orbitals (or wave functions), this last point is to
be emphasized as crucially in favor of our method. To
give a specific example, a fragment property such as its
kinetic energy is represented by the quantum operator
T= ——,''72 (an operator which is not simply multi-
plicative) and has the expectation value ( T)
=2Tr($~ ——,

' "7 ~f), which can be easily evaluated
given the orbitals P (again we emphasize, within the
single-determinant approximation). The general ma-
trix element in the trace is

(0;I r''7 14;) fg;(r)( ——,'V )t(;(r')I, , d r,

where is it understood in Lowdin's notation that
——,

' V2 operates on the primed coordinates first, after
which they become unprimed and integration takes
place. However, given the density p(r) alone one
cannot in a similar way evaluate the expectation value
( T). In the density p(r), primed and unprimed coor-
dinates have no individual significance (i.e. , r = r) and
the usual procedure just given for evaluating ( T) can-
not be applied. The only property expectation values
that can be obtained from the density alone are those
represented by operators which are purely multiplica-
tive such as various powers of the distance r. For
these cases the general rule for evaluating expectation
values collapses to an expression requiring the density
alone, e.g. ,

X4((r)r@;(r') I„„d'r=„rp(r)d'r.
Now, using the valence orbital of Fig. 1(a) (and the

fixed 1s core) we have calculated four interesting ex-
pectation values for both the Be hybrid atom and the
free atom. These are the electron-nuclear attraction
energy, the average electron distance —measured from
the nucleus, the average squared distance —a factor in
the quadrupole moment of a charge distribution, and
the electronic kinetic energy. The magnitudes of these
expectation values, hybrid (free), in atomic units are,
respectively, ( —zr ') = —31.6608 (—33.2340), (r)
= 7.8409 (6.1259), (r2) = 19.1857 (17.2820), and

( —
2 & ) = 13.6911 (14.5720). The magnitudes of

the hybrid Be properties are reasonable. In particular,
the kinetic energy is less than the free-atom value as is
anticipated if the electron distribution "occupies"
more space in the crystal versus the free atom. But in
accordance with our previous discussion, the impor-
tant point demonstrated numerically is that even such
nonmultiplicative properties as the kinetic energy are
available from our method since we obtain a density
matrix in an orbital representation. This is not the
case for methods of diffraction analysis which give the
density alone. 6

The nonsphericity of the Be hybrid atom is evident
in the model deformation density of Fig. 1(b). One
may interpret the figure as the charge rearrangement
of an atom due to crystal bonding. Charge coming
from along the horizontal axis and out of the core re-
gion flows along the vertical axis. Hence, a clear an-
isotropy is established when the c direction is com-
pared to the a or b directions. Indeed, the hybrid's
charge buildup along c is consistent with the Be
crystal's ratio of c/a = 1.568 which is 3% below the
ideal value for hexagonal close packing of 1.633. If
the bonding along c is stronger than along a or b, and
that is indicated by the deformation density, then the
natural consequence is shortening along c, and, hence,
a reduced value of c/a compared to the ideal case.

If one superposes the deformation density of all Be
hybrid atoms, each Be at its position in the lattice, one
obtains the model deformation density of the crystal as
a whole. We have carried this out graphically super-
posing the effects of 500 hybrid atoms contained in
125 orthohexagonal unit cells. The result, which con-
forms quantitatively to the experimental deformation
maps of Larsen and Hansen, 2 is that charge flows into
the tetrahedral hole regions and out of the nuclear re-
gions and octahedral channels. Bonding, therefore, is
directed through the tetrahedral holes. Interestingly,
examination of the deformation density of the crystal
has been interpreted as a bonding scheme based upon
resonating sp3 orbitals directed toward tetrahedral
holes. However, our hybrid deformation density from
which the full crystal deformation is constructed is not
consistent with a sp hybrid scheme.

The basis we have used relies upon floating spherical
Gaussian orbitals to represent the nonspherical com-
ponents of the Be hybrid atom's orbital. If one wished
to analyze our deformation density in terms of more
commonly used basis orbitals, Fig. 1(b) would be con-
sistent with an orbital having a much larger p, charac-
ter than an sp3 hybrid.

Figure 2 presents our model valence-density map for
the (X, Y, —,

' ) crystal plane. Corresponding ab initio
results are shown for comparison. The results of
Dovesi et al. , Fig. 2(a), are based upon ab initio
Hartree-Fock linear combination of atomic orbitals cal-
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FIG 2. V.alence density from (a) Dovesi et al. , (b) this
work, and (c) Chou, Lam, and Cohen. Projections of the
tetrahedral and octahedral holes are indicated. Contour in-
tervals are as in Fig. 1 except that the zero contour refers to
four electrons per unit cell volume.

culations using an extended basis of s and IJ functions.
Our work is shown in Fig. 2(b). The results of Chou,
Lam, and Cohen, s Fig. 2(c), are ab initio pseudopoten-
tial calculations within the local-density-functional
scheme. Both of the ab initio methods shown here
have been widely applied to solids and are capable of
yielding reliable results. All three maps in Fig. 2 have
been generated by Fourier summation of 28 thermally
smeared structure factors. In each case, the neutron
thermal parameters of Larsen and Hansen2 have been
used. On the whole, the concordance between ab initio
and x-ray orbital valence-density features is excellent.
The nonspherical aspects of the valence density are
clearly apparent. Completely in agreement with the
experimental maps of Larsen and Hansen2 there is a
buildup of charge around the tetrahedral hole regions
at the expense of charge removed from the crystal's
octahedral channels. Our map agrees quantitatively
more closely with the experimental map of Larsen and
Hansen, 2 and like theirs falls numerically between the
two ab initio maps shown.

—4
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FIG. 3. Distribution of errors. R~F = 0.0018, and
G.O.F.= 1.33.
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In Fig. 3, in order to analyze how well our model
represents the experimental data, we plot AF, the
difference between observed and calculated structure
factors, in units of o- (the standard deviation of F) as a
function of scattering angle. The model is seen to fit
the highly accurate Be data remarkably well. Notice
that the errors in F are randomly distributed out to
highest angles in close accordance with a normal distri-
bution of errors. The weighted R factor has the very
small magnitude 0.0018 and is calculated with use of
weighting factors that are based solely upon the count-
ing and sample variance statistics of the experiment.
The goodness of fit, G.O.F.= 1.33, is another indicator
that our model matches the experiment very well.
Indeed, the excellent fit over the full range of sin0/)l.
obtained with the very simple orbital model used here
is satisfying.
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