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We develop for the first time an approach a /a Borland to Anderson localization in multidimen-
sional systems; it provides a proof of localization when the Green’s function decays exponentially,
e.g., at large disorder or large energy. This approach also provides results about the Lyapunov ex-
ponents associated with a quasi-one-dimensional system. Finally we obtain the result that the
singular continuous spectrum, found in some incommensurate systems, turns into exponential lo-

calization under arbitrarily small local perturbations.

PACS numbers: 71.55.Jv, 03.40.Kf, 03.65.—w

The problem of localization of electrons in disor-
dered solids has been of theoretical and experimental
interest for years among condensed matter physicists;
for reviews on this topic we refer to Thouless,! Berg-
man,? and Souillard.? In this paper we consider the
Anderson model of electrons in crystals with impuri-
ties; it is a tight-binding model associated with a d-
dimensional lattice or with a restriction of it, such as a
wire (infinite cylinder). The Hamiltonian of the elec-
tron is given by

(H¥)(x)= T(y)+ V(x)¥(x), ¢))
[x=yl=1

where the V(x)’s are independent random variables,

that we shall suppose, for simplicity, are identically

distributed. In particular, we want to study the station-
ary states, which satisfy

HY =EV. (2)

It was first predicted by Anderson® in 1958 that for a
typical sample all states should be exponentially local-
ized for large enough disorder and that for any disor-
der the states should be localized at low enough ener-
gy, with a transition to extended states expected to oc-
cur for weaker disorder and in the middle of the band.
It was later shown by Mott and Twose® that in one
dimension all states are exponentially localized for ar-
bitrarily weak disorder. More recent scaling argu-
ments® have yielded the result that all states should be
exponentially localized in two dimensions, again for
arbitrarily weak disorder.

For one-dimensional (1-D) systems, a fundamental
step was achieved by Borland in 1963.7 In his well-
known work, he gave a particularly simple approach to
1-D localization which furthermore shows that the lo-
calization length is the inverse of the Lyapunov ex-
ponent associated to some product of 2x2 random
matrices which is particularly simple to compute nu-
merically. )

In the present paper we want to develop for the first
time an approach a /a Borland to multidimensional
systems. It gives a simple approach to Anderson local-
ization in the case when the Green’s function decays

exponentially, a property, e.g., of sufficiently disor-
dered systems. In order to realize this program we will
first have to clarify one difficulty intrinsic to Borland’s
approach and connected with some known counterex-
ample and then to give the conditions under which
Borland’s approach is correct; this step is achieved by
use of a new idea of Kotani,? also contained implicitly
in the work of Carmona.’ From this discussion we will
see that our approach to multidimensional localization,
in fact, gives a mathematically rigorous proof of it!
But we will also ‘‘get for free’’ some by-products: In
particular, we find that arbitrarily small local perturba-
tions of the potential at two sites make the ‘‘singular
continuous spectrum’ (sometimes called ‘‘exotic”
states) obtained in some classes of one-dimensional
incommensurate systems disappear and instead all
eigenstates become exponentially localized! We also
prove that the smallest of the Lyapunov exponents as-
sociated to the Anderson model in a strip, which is
used in finite-size scaling arguments, does not vanish
in the limit of infinitely large strips, e.g., at large
enough disorder, a result that is physically intuitive but
an old mathematical conjecture.

Borland’s approach can be summarized in the fol-
lowing way. Consider a 1-D tight-binding model for
which Eq. (2) reads

Vo= =V, + (E= V)V, (3)
or, with use of a transfer matrix formalism
(V,11, V) =M, (V,,¥,_,)
=M,M,_; - M(\¥,¥), 4)

where M, is a 2X 2 random transfer matrix. Borland
shows that for any typical sample (i.e., for almost
every sequence V,) the norm of the product [TM; of
random matrices increases exponentially with n, so
that (noticing that detM,=1) all solutions of Eq. (3)
are exponentially increasing at + oo except one which
decays exponentially at + oo, and similarly at — co.
Borland then argues that since physical states can grow
exponentially neither at + oo, nor at — oo, the only
physical energies are those E for which the unique
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solution exponentially decreasing at + oo coincides
with the unique solution for exponentially decreasing
at — oo, and as a consequence the only physical states
are exponentially localized states. Furthermore, this
argument clearly identifies the inverse localization
length as the rate of exponential growth of the product
of random matrices, which is the so-called Lyapunov
exponent and which is particularly easy to compute nu-
merically.

Actually there is a difficulty with this very appealing
argument as can be seen, for instance, in the following
tight-binding model for an incommensurate system:

Y, 1+, _1+rcosl2a(an+0)IV,=EV,. (5

It is known that for « irrational and A > 2 the
Lyapunov exponent is strictly positive but if « is an ir-
rational number ‘‘well approximated by rationals’’ it is
known!? that for almost every @ there is no localized
state! We thus want to understand this paradoxal situ-
ation and clarify under which conditions, if any,
Borland’s argument is valid.

So what is the difficulty in Borland’s method? Let
us denote by Q the set of the potentials V=1{V,},¢ z;
V'is chosen in ) according to some probability distri-
bution P. The exponential growth of the product of
transfer matrices is known to be true, an energy FE be-
ing given, only for all potentials outside of some set
Q ¢ of zero probability, i.e., P(Q ) =0. In fact, what
we would like to do is to first choose the potential at
random and then for this potential get results valid for
every energy, or at least all physically relevant energies
(more on this later). However, the exponential-
growth property cannot be shown directly to be true, V
being given, for every energy because () p does depend
on the energy; in fact for any given potential the ex-
ponential behavior holds only outside of some (dense)
set of energies S(V) of zero measure, which could
happen to contain physically relevant values of the en-
ergy for which we could have ‘‘exotic states.”’

Let us now make more precise what we mean by a
physically relevant energy and a physical state: What
we want, in fact, is to discuss the time-dependent
properties of solutions of the time-dependent
Schrodinger equation with a given square integrable
initial condition. This time evolution can be computed
if we know the solutions of the stationary Schrédinger
equation (2), but in fact we do not need to know all
the solutions of (2) for all £ but only for some of
them. More precisely we need to consider only those
E (the physically relevant energies) for which there
exist nonexponentially increasing solutions, and only
those ¥ which are not exponentially increasing.
Technically speaking the relevant energies E are those
for which there exist (polynomially bounded) general-
ized eigenfunctions ¥ solutions of (2), and it is known
that those of E are of full spectral measure. Note that

if H has an eigenvalue spectrum, the relevant energies
are the eigenvalues.

In order to study the exceptional sets S ( V), we first
notice that the exponential behavior of [JM; is the
asymptotic property and thus does not depend on the
values of ¥ (0). Then the exceptional set of energies
S (V) is constant under changes of ¥ (0). On the oth-
er hand, the physically relevant energies can be ob-
tained from the eigenvalues of the restriction Hpof H
to large boxes A (in mathematical terms the spectral
measures of Ha weakly converge to the spectral mea-
sure of H as V.~ Z). The eigenvalues of Hp vary
smoothly and monotonically if V(0) is varied, and
thus the experimental set of energies S(¥) cannot in-
tersect the set of eigenvalues of H except for an ex-
ceptional set of values of the potential at 0; by the con-
vergence of the spectral measures this is enough to en-
sure that, for P-almost-every V, S(V) does not con-
tain relevant energies. This argument takes its inspira-
tion from Kotani,® where Kotani uses the boundary
condition as a parameter [like our ¥ (0)] in the semi-
infinite system.

This suggests the natural condition under which
Borland’s argument can be applied: It is sufficient!!
that the potentials ¥ (0) and V(1) be distributed with
a continuous density, however small their range of
values [the variation of V(1) in addition to ¥ (0) is
needed in the above perturbation argument to deal
with the cases when W(0) =0], to conclude that the
matrix product grows exponentially, for almost any
configuration of V, and for the relevant energies of H.
Thus the solutions of (3) behave exponentially at both
infinities; as the generalized eigenfunctions cannot
grow exponentially they decay exponentially at both
+oo. This proves that the generalized eigenfunctions
are exponentially localized eigenstates and we see that
the inverse localization length is identified as the ex-
ponential growth rate of [JM;, i.e., the Lyapunov ex-
ponent.

The above provides us with a simple proof of locali-
zation in disordered 1-D systems,!! but the result is
not a surprise. A consequence which may be more
surprising is the following: Consider a tight-binding
model of incommensurate systems such as the one dis-
cussed above for which there is a positive Lyapunov
exponent but no localized state; arbitrarily small ran-
dom perturbations on the potential, e.g., at sites 0 and
1 make the singular continuous spectrum disappear
and give rise to exponential localization of all states
with the Lyapunov exponent as the inverse localization
length! Thus the singular-continuous-spectrum fea-
ture is irrelevant to physics in these cases.

A straightforward generalization!! gives the same
results for the case.of a wire or quasi-one-dimensional
system, where one considers an infinite cylinder of
given finite section. If the section has N sites, the
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transfer matrices are now 2N X 2N matrices. In this
case, the localization length is found to be the inverse
of the smallest positive Lyapunov exponent of the
product of transfer matrices; still, localization occurs
for arbitrarily small disorder, under the hypothesis that
the potentials are independently distributed with a
density with respect to the Lebesque measure.

Borland’s approach can, in fact, be extended to mul-
tidimensional systems as we are now in a position to
show. We would like to argue that any solution of (2)
either decays or grows exponentially, as soon as the
disorder is large enough or when one considers states
of sufficiently low energy. Unfortunately in multidi-
mensional systems, the previously considered transfer
matrices become infinite, and are not directly usable.
The behavior of the solutions is, in fact, ruled by the
behavior of the Green’s function, as shown by De-
lyon, Lévy, and Souillard'? and previously by Mar-
tinelli and Scoppola.!® In particular, a nice sufficient
condition to get the expected exponential behavior, in-
creasing or decaying, of the formal solutions of (2) in
any direction is that the Green’s function decays ex-
ponentially at infinity. Indeed, suppose that the
Green’s function of the infinite multidimensional sys-
tem decays exponentially; namely, suppose that we
have the following bound:

G(xy,E) < C(x,EV)exp{—a(E)|x—yl}, (6)

with a« (£) > 0. This allows us to give a sense, column
by column, to the operator product GH, so that, apply-
ing G to the left of the equation

(H+38V|0) (0¥ =EV, @)

we get the result that, if ¥ satisfies (7) and does not
increase exponentially at infinity, then it is proportion-
al to G|0) and exists only if 8V is equal to
1/G(0,0,E). Now we argue as Borland does that the
physically relevant states cannot grow exponentially at
infinity so that, by (6), the eigenstates of H necessarily
decay exponentially.

Still in this a /a Borland multidimensional method
we assume that the distributions of the potentials have
densities; this still allows us to let the potential vary lo-
cally in a continuous way and, as in the 1-D case, dis-
card the exceptional situations. This proves that, at
any dimension and under the assumption that the ran-
dom potential has a density, one has only exponential-
ly localized states as soon as the Green’s function de-
cays exponentially. This condition, or at least some
analogous condition on finite systems which is suffi-
cient for our argument, comes from a control of the
resonances of the system and was proven by Frohlich
and Spencer'® (see also Holden and Martinelli®) at
sufficiently high disorder or for low enough energy.
Thus our approach provides us with the first
mathematical proof that, as predicted by Anderson, all
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the eigenstates are exponentially localized in these re-
gimes.

Whereas results are hardly available directly on the
behavior of the smallest Lyapunov exponent con-
sidered in the study of the wire when the section in-
creases, one consequence of our above results is that
this Lyapunov exponent—e.g., at large disorder—
remains bounded below, as the section of the cylinder
increases. This fact is not surprising physically since
this Lyapunov exponent should go to the inverse local-
ization length which is nonzero in this regime, but, on
the mathematical side, this used to be a conjecture dif-
ficult to attack directly.

As a summary, we have discussed in detail the clas-
sical Borland argument. We have clarified the condi-
tions under which this argument can be applied. We
then developed an approach @ la Borland to localiza-
tion in multidimensional systems. The conjunction of
these two results yields the first proof of Anderson lo-
calization for multidimensional systems at large disor-
der or at low energy. We obtained in passing the proof
that the smallest Lyapunov exponent in a wire does
not go to zero for infinite width, e.g., at large disorder.
Another consequence of our work is that the known
cases where the spectrum is found to be singular con-
tinuous, i.e., the systems with quasiperiodic potential
described above, must be considered as exceptional
and physically irrelevant in the sense that they are un-
stable under perturbations of some isolated potential,
as any such perturbation leads to exponential localiza-
tion.

While we were completing this work, we learned
that Frohlich et al.'® and Simon, Taylor, and Wolff!’
have reached similar conclusions as far as a proof of
localization is concerned. In the first reference one
will find a preliminary version of a different proof.
The second one is an announcement of a proof similar
to the one of Ref. 12, with some technical differences,
but with no connection to Borland’s approach.
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