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Pressure-Induced Cubic to Tetragonal Transition in CsI
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First-principles self-consistent total-energy calculations within the local-density approximation
show, in agreement with experiments, that CsI undergoes a transition from the cubic (CsC1) struc-
ture to a tetragonal structure at a pressure P, = 40 GPa. The calculated volume at the transition is—53/0 of the zero-pressure volume. %e find that the phase transition is driven by an "intercellu-
lar" electrostatic interaction. A structural bistability is found around the transition.

PACS numbers: 62.50.+p, 64.70.Kb, 71.25.Tn

The study of physical properties under pressure is
essential to the understanding of bonding in solids.
The advent of the diamond anvil cell has made it pos-
sible to examine systematically pressure-induced phase
transitions. Recently it has been observed' ~ that
under high pressure the cesium halides undergo a tran-
sition from the cubic (B2 CsC1 structure) to a tetrago-
nal structure. In this Letter we show that we can
predict the phase transition in CsI from first-principles
theoretical calculations. These indicate further that
the phase transition is driven by an "intercellular"
electrostatic Coulomb interaction. Even though only
one compound, CsI, is explicitly considered here, we
expect that our theoretical results should be applicable
to CsBr and CsC1 equally well, and other ionic com-
pounds.

A simple model calculation of total-energy varia-
tions in ionic solids with pressure was recently present-
ed by Vohra, Duclos, and Ruoff, s who found that the
observed' 4 phase transitions follow from a total-
energy expression consisting of a simple Madelung
term and a Born-Mayer —type repulsive term with ad-
justable parameters. This is probably not very surpris-
ing since related procedures have been successfully ap-
plied in calculations of elastic shear constants. First-
principles calculations of such quantities, however,
are demanding, requiring an accurate description of
the electron-electron interactions including the proper
nonsphericity of the charge distributions. The simple
ASA (atomic spheres approximation), which has been
successfully employed for many other cases, is too

crude for calculations of shear elastic constants.
The ASA theory cannot predict a phase transition as

observed, but we show that a simple change to a
muffin-tin formulation of the total-energy functional
is sufficiently accurate to give the transition volume
and pressure (the insulator-metal transition is dis-
cussed elsewhere ).

In the local-density approximation the total-energy
functional is

Uc= Ji Jl [p(r) p(r')/Ir —r'I]d'r ti'r'.7 f
(2)

We assume atomic Rydberg units throughout. The
quantities describing the muffin-tin model are the fol-
lowing: Each of the N cells contains n atoms, indexed
by "i "Space. is divided into (nonoverlapping)
muffin-tin spheres (radius s;), centered at the atomic
positions h, , and an interstitial regime [0' in Eq. (2)].
The interstitial electron density is taken to be constant,
po, and inside the spheres (&;) the density is made
spherically symmetric. The density p(r) in Eq. (3) is

E= T + Uc+ U„,.

Here T, is the kinetic energy of the system of nonin-
teracting electrons. In a muffin-tin model (MT) the
exhange-correlation ( U„,) and Coulomb-type ( Uc)
terms are

U„,=NXJf„e„,fp;(r)lp;(r)& r+f poa„[p~ld3r,

p (r) = Q Il p;( Ir —(R+ h;) I ) —po]0; —Z;~ (r —R —h;)] + po,
R, i

wh««t =0(s; —Ir —R+h;I) is a step function which is I for r inside the MT spheres, and 0 elsewhere; Z; is the
a«mtc numb««a«m "i,"p; is the spherically averaged density. The Coulomb contribution per cell to Eiss 9

U cell
C

2

=X'"'+1.8g "+g " " "+X(Z,—q,)," (Z, —
q, )+X(Z, —q, ) "+—~,, q„. (5)
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The symbols not defined so far are

pS(
q;=„I 4m r2p;(r)dr,

qO ~ = 0;pO, pO= X,(Z; —q;)/( V —X.fl )

0, = —ms 3
3

V= cell volume= —', mnS„,

2S„
M, =XR " —V 'Jtd'r(2&. ./(rl).

I J

In the ASA to Eq. (5), the muffin-tin spheres are
replaced by overlapping atomic spheres, and p0 [Eq.
(7)] is replaced by a (weighted) average of the electron
densities on atomic-sphere surfaces. If, for simplicity,

3x10 c

all atomic spheres are taken to be of equal size, i.e.,
with radii S,„, then all qo; are equal. In a diatomic
solid (like CsI) the last term in Eq. (5) then vanishes,
and the fourth term is the usual ASA Madelung7 term
(UM, d ). The sum of the second and third terms
represents the so-called "MT correction" in the ASA.
In a monoatomic solid this reduces to

~ UMT = (1 8 —nM) qo /~-,
where nM is the Madelung constant. The expression
(12) is the MT correction'0 to the ASA which has
been by Skriver" and others. ' ' Inspired by the suc-
cess" of this approximation, we tried to apply it to CsI
under tetragonal deformation. For fixed volume we
found only a weak dependence of q0 on c/a. This
means that the structural differences in the MT correc-
tion are given by the structural variation of 0.M, i.e., a
purely geometrical variation. The difference nM(bcc)—nM (c/a) is shown in Fig. 1 as a function of c/a, to-
gether with b, UMATSA for CsI (dashed curve) for
V/V0=0. 503, with VO being the observed equilibri-
um volume. For c/a =1 (bcc), nM is 1.791857 and
for c/a = W2 (fcc), nM = 1.791 747, and nM(bcc)—nM(c/a) has a maximum for c/a —1.2. The struc-
tural differences in the ASA total energy,

EASA: T&(ASA) + U„(ASA)

+ Uc"" (ASA) + U

is positive for all c/a&1. 0 (cf. the dash-dotted curve
in Fig. 2). Since, in ASA, the difference AUMT" (c
/a) —b, UMT" (1) is positive for all c/a, it tends to sta-

Tetragonal

t(E = [E (c/a) -E ( cia = 1.0)]
a E ASA (V/V0 = O.SO) /

CK

E -10
I—I—
XX

-20—

', V/Vp = 0.50

10—

5

0
LLj

.53

I I I

0.9 1.0 1,1 1,2
I

1.3 1.4

FIG. 1. (a) (Left-hand scale) Madelung-constant differ-
ences for body-centered tetragonal structure, —[nM(c/a)
—nM(1.0) ], and (right-hand scale) ASA version of the
muffin-tin correction [cell-cell interaction, second and third
terms in Eq. (5) in the atomic-spheres approximation as
described in text] for V/ Vo= 0.50, both as functions of c/a.
(b) Variation, A(AMT), of this intercellular electrostatic en-
ergy with c/a for two volumes, V=0.56Vo and V=0.50V0.
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FIG. 2. The dash-dotted curve is the ASA total energy vs
c/a for V/ V0=0.50. The solid curves show total-energy
variations calculated in the muffin tin model for five volu-mes,
V/ Vo = 0.50, 0.52, 0.53, 0.54, and 0.56.
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bilize further the cubic structure. This term cannot
drive a transition to the tetragonal structure.

The ASA total-energy functional includes for a
monoatomic solid only intrasphere electrostatic in-
teractions, and for a compound, in addition, only
monopole sphere-sphere interactions via the Madelung
term UM, d . We refer to the difference 3, UMT
between the Coulomb energy calculated in the
muffin-tin model [Eq. (5)] and the ASA Coulomb en-
ergy, Uc"' (ASA) + UMsd, as an "intercellular" elec-
trostatic interaction energy. Figure 1(b) shows the
structural variation, A(AUMT ), of this term versus
c/a for two fixed volumes. This correction is strongly
volume dependent, and for sufficiently small volumes
it favors the tetragonal structure. The differences
between the ASA and the MT values of the
exchange-correlation energy are extremely small. This
follows from Fig. 2 where the total-energy variations
obtained' from the MT functional (b, EMT) for five
volumes are shown. The difference between b, EMT
and AEAsA is to high precision 6 UMT ). This term is
considered as driving the phase transition. This as-
signment can be further supported by application of
the "frozen-potential" approach. '3'5 The method
prescribes how to calculate the structural energy differ-
ence as essentially a change in one-electron energy
plus an electrostatic contribution. Using the MT
model we find that this latter term is nearly the same
as h(b, UMMTT ) in the case of CsI. The reason'3'5 for
this is that there is almost no self-consistent charge
redistribution when c/a is altered. We could separate
the total-energy change into a Madelung term [cf.
fourth term in Eq. (5)] and a remainder, which then
would represent a first-principles calculation of the
repulsive term of Ref. 5 (apart from modification due
to a different ionicity in our case7)). However, in do-
ing this, it can be seen that the originally simple look-
ing Born-Mayer term in fact contains several contribu-
tions of very different nature. We prefer to group the
electrostatic terms together giving one term which is
somewhat more complex than just the point-ion in-
teraction. A discussion, also relevant to this work, of
closed-shell interactions is given elsewhere. "

The theoretical value of V/Vo at the transition is
0.531 and the calculated pressure at which the transi-
tion occurs is 402 kbar, i.e. , in good agreement with
experiments2 (0.56 and 400+10 kbar, respectively).
As follows from Fig. 3 we find theoretical c/a ratios
that are larger than those observed (this is also the
case in Ref. 5). It remains to be investigated whether
a further refinement of the description of the non-
sphericity of the charge density will reduce this
discrepancy between theory and experiment.

The total-energy curves (Fig. 2) show that although
the tetragonal phase for V/ Vo ( 0.54 has the lower en-
ergy, the cubic phase represents a (meta)stable state.
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FIG. 3. Theoretical (curve) and experimental (crosses,
Ref. 2; triangles, see Ref. 8 of Ref. 5) values of c/a for CsI
as functions of pressure.

A small energy barrier separates the two phases, i.e. ,
the tetragonal elastic shear constant c' is positive for
c/a=1. Three of the total-energy curves shown in
Fig. 2 correspond to volumes for which the tetragonal
phase is stable, V/ Vs=0.53, 0.52, and 0.50. The bar-
rier heights in these cases are 0.5, 0.4, and 0.2 mRy,
respectively. Extrapolation predicts that the barrier
vanishes (i.e., c' in the metastable phase would go to
zero) at the volume ratio V/Vo=0. 48. This is the
same volume at which the metastable cubic phase
disappears according to the fitted model of Ref. 5.
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