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Fixed Winding Number and the Quasiperiodic Route to Chaos in a Convective Fluid
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We present an experimental observation of the transition to chaos for quasiperiodic routes of
fixed winding number. The hydrodynamical system studied is a Rayleigh-Benard experiment in
mercury, in a time-dependent state with one limit cycle. A second oscillator is imposed by an ac
current. We have measured the fractal dimension of the locked regions at the critical curve as well
as the scaling properties associated with two different irrational winding numbers, to which the sys-
tem was tuned. Our results agree with quantitative theoretical predictions based on the circle map.

PACS numbers: 47.20. +m, 47.25.—c

In 1ow-order dynamical systems, a quantitative set of
predictions and observations exist for the case of suc-
cessive period-doubling bifurcations. ' Theoretical
predictions exist also for the transition from quasi-
periodicity to chaos, using renormalization-group
methods. '-'

In this paper we report quantitative results on a fluid
fiow experiment addressing the question of quasi-
periodicity. We study a flow with two sharp frequen-
cies, in a Rayleigh-Benard experiment. Usually, when
the two frequencies are generated by the flow, an in-
crease in a control parameter results in mode locking.
That is, the ratio of the two basic frequencies retains a
given rational value over some finite range of the con-
trol parameter. To study a quasiperiodic flow with in-
commensurate frequencies, a practical approach is to
start from a state of the fluid with one oscillator
present, and to force a second oscillator by modulating
a control parameter. In this way one can achieve any
desired ratio of frequencies between the two oscilla-
tors. One can study the transition from quasiperiodici-
ty to chaos by increasing the nonlinearities in the flow.
In the present work we keep the Rayleigh number
fixed, and we increase the nonlinearities by increasing
the amplitude of the forced oscillator. The existing
theoretical predictions pertain to a route to chaos in
which the frequency ratio of the oscillators, the wind-

ing number, is kept constant and as close as possible to
an irrational value. The irrational value usually chosen
is the golden mean o-G = (&5—I)/2. It has a periodic
representation as a continuous fraction containing only
ones (1, 1, 1, 1, . . .) and has, therefore, the slowest
possible convergence in a rational approximation. Pre-
liminary experimental results on this route have al-
ready been obtained. In our experiment we followed
two routes, setting the winding number either to the
golden mean, or to the "silver mean" o-s = J2 —1 de-
fined by (2, 2, 2, 2, . . .) in continued-fraction rep-
resentation.

Small —aspect-ratio Aaylei gh-Benard experiment in
mercury. —We will not describe the experimental setup
already published elsewhere. 2 We used a small—
aspect-ratio cell (0.7x 0.7 && 1.4 cm ) filled with mercu-

ry. For low —Prandtl-number fluids like mercury, the
first bifurcation above the onset of convection in a
Rayleigh-Benard experiment is a Hopf bifurcation
which leads to a time-dependent state called the oscil-
latory instability. 8 This instability is our first oscillator
and is related to the appearance of ac vertical vorticity
in the fluid. '

Our second oscillator is generated in the fluid by an
electromagnetic process. We apply a small dc magnet-
ic field, horizontal and parallel to the axis of the con-
vective cells in the fluid (H =200 G). We apply a
vertical ac sheet of current through the fluid, on the
plane separating the two convection rolls which are in
the cell (I of the order of 20 mA). The plane of the
current is parallel to the magnetic field. The Lorenz
force induces an ac vertical vorticity in the fluid's
velocity field. This is our second oscillator, whose fre-
quency and amplitude are controlled externally. We
use a pulse excitation, the pulse width being about ~Q

of the period. A pulse excitation was used instead of a
sinusoidal one to allow some degrees of freedom to
the fluid velocity field. Changing the amplitude and
frequency of the ac current we can scan a very large
range of winding numbers and amplitudes. We note
that in this experiment with two competing oscillators,
one is fixed externally and the other, the oscillatory
instability, is shifted in frequency and amplitude by the
former. This is different from a situation where two
oscillators can freely interact and both frequencies and
amplitudes can shift. The fluid motion is measured lo-
cally with a thermal probe located in the bottom plate
of the cell. In a small-aspect-ratio cell, the location of
the detector is irrelevant. The ~inding number and
the oscillators' amplitudes are measured using a fast-
Fourier-transform analysis of the data. The quality of
such an experiment depends on the stability achieved.
The internal oscillator frequency is close to 0.230 Hz
and its stability is 10 5. The generator used for the
imposed frequency is an HP 3325A which has a stabili-
ty well beyond our needs.

Quasiperiodicity and phase lock in By sweeping -th. —e
external frequency and amplitude one can map out a
number of phase-locked states, the so-called Arnold
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FIG. 1. Locked-mode regions (Arnold tongues) in a dia-
gram of external pulse amplitude vs the ratio of the frequen-
cy of the oscillatory instability (at zero forcing) r0gri to the
frequency of the external pulses co,„,. Only tongues of ap-
preciable width are shown. The frequency ratio is given for
these tongues. Insets: Locked states near aG and o-s (Ref.
12) on the critical line. The origin of each inset shows the
position of the critical line at the particular irrational fre-
quency ratio and the precise frequency limits of each locked
state are given in Table I.

tongues. ' The results are depicted in Fig. 1. The hor-
izontal scale is the ratio between the "bare" oscillatory
instability frequency duo(t) (zero external excitation)
and the external frequency. On the vertical axis we
have plotted lock-in regions with large widths, corre-
sponding to small denominators in the frequency ratio.
Locked states with denominators larger than 200 have
been observed and are stable. As theoretically predict-
ed, the width of the tongues grows with the amplitude
of the excitation. Eventually the tongues overlap, the
critical amplitude for overlapping depending on the

Locked
state

~low

(MHz)
~high

(MHz)

TABLE I. Frequency limits of locked states near o-g and
as (Ref. 12) at the nearest approximation to the critical line.
The data were taken at A =17.4 mA for crG and R =4.09R,
while for o-~, A = 19.4 mA and R = 3.94R, . The uncertainty
in the data is 5% of the locked bands' widths.

frequency ratio. This defines a critical curve on our di-
agram: On this curve (henceforth called the "critical
line" ) the locked bands, which are ordered through
the Farey construction, " form a Cantor-type set with
fractal dimension D.

%'e measured D near o-G and o-z as follows'
Denote by S the length of the interval between two
locked-band parents around the irrational winding
number being considered. This interval includes in-
side it the locked daughter band corresponding to the
Farey composition of the parent states. Denote by S, ,
i = 1, 2, the length of the intervals between the
daughter band and each parent, respectively. Then D
is given by

(S,/S)D+ (S,/S)D = 1.
In the insets in Fig. 1 we show the bands used to

compute D for each of the two irrationals; Table I indi-
cates the bands' frequency limits. The critical line is
not a constant-amplitude line in the diagram, even for
measurements made at the same Rayleigh number.
The critical amplitude depends on the irrational fre-
quency ratio chosen. This dependence is indicated in
the figure by the different origins of the insets. The
amplitudes in the figure correspond to a Rayleigh
number 8 = 4.09R, .

Our results for D are shown in Table II. In the case
of o-z, the result is an average over two of the possible
combinations obtained from the four locked bands.
Up to experimental error (3'/o), the result of the mea-
surements at both cr~ and a-z is the same, showing
that D is indeed a global property along the critical
line. Moreover, our results agree well (2%) with the
theoretical result' '" D = 0.868.

Scaling properties of the routes with fixed winding
number To follow .—a route of fixed frequency ratio
the experimental procedure is as follows: We increase
the excitation amplitude by a small amount and then
adjust the external frequency so that the ratio between
the two frequencies remains constant up to 0.03%.
This is done by means of a fast-Fourier-transform
analysis of the temperature signal. The Rayleigh
number is kept fixed during the experiment. It is evi-
dently nonphysical to stay at an irrational value and the
best we can do is to approximate it to within 2 && 10

From the study close to the golden mean,
a-G = (JS—1)/2, we show in Fig. 2 three spectra

13/21
21/34
34/55
55/89

12/29
17/41
29/70

o.~ = ( 1, 1, 1, 1, . . . )
392.350
393.230
393.050
393.133

mrs=(2 2 2. 2 . )
574.175
573.450
573.865

392.663
393.345
393.095
393.155

574.575
573.650
573.925

a G = ( 1, 1, 1, 1, . . .) ~s = ( 2, 2, 2, 2, . . .&

0.86 + 3%
2.8 + 10%

0.85 +3%
7.0 + 10%

TABLE II. Experimental data for the fractal dimension D
of the critical line and the scaling number 5 near u(.- and a-q

(Ref. 12) at the corresponding critical amplitudes.
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FIG. 2. Spectra, logP (cu) vs cu, for quasiperiodic states at
R = 4.098, having frequency ratio a-G (with 2x 10 accura-
cy) between the renormalized oscillatory instability frequen-
cy ceo and the external pulse frequency co,„„at different
pulse amplitudes: (a) 2 = 16.9 mA (below the critical line),
(b) 3 = 17.4 mA (nearest approximation to the critical line),
(c) 2 = 21.5 mA (above the critical line).

below, at, and above the critical point. The main ob-
servations are as follows: Below the critical line, Fig.
2(a), a small number of peaks appear, all linear com-
binations of our two basic frequencies cu,„, and cdp. At
the critical line, Fig. 2(b), a very large increase of
combination frequencies is observed in the spectrum.
Slightly above the critical line, high-order combination
frequencies are weaker and noise is present with the
average noise level increased by almost 20 da. This
route to chaos shows some qualitative behavior similar
to period doubling. Up to the critical point the low-
frequency population increases with the control param-
eter. Above this critical value noise slowly replaces
the higher combination frequencies. Close to the gol-
den mean the Fourier spectrum can be redrawn to
show self-similarity. We have plotted, in Fig. 3,
log[P(cu)/co ] vs log(cu), at the critical point corre-
sponding to Fig. 2(b). For the sake of clarity not all
the peaks experimentally observed are shown. The
peaks labefed 1 can be obtained from the internal fre-
quency coo by the prescription cu = coocrG.

In fact, all the peaks in generation 1 are obtained by
the formula co= lmo-G —n l (with the external fre-
quency normalized to 1), where m, n (m ) n) are suc-
cessive numbers of the main Fibonacci sequence
(1, 1, 2, 3, 5, 8, . . .). The same prescription accounts
for all the peaks of the spectrum, each integer-labeled

—7

QJO /(t)
FIG. 3. Scaled spectrum for frequency ratio

ct)Q/clj g o G + 2 x 10 and pulse amplitude A = 17.4 mA
(nearest approximation to critical line), where coo is the re-
normalized oscillatory instability frequency and co,„t the
external pulse frequency. We plot log[P(co)/co'] vs logos.
The spectrum corresponds to that of Fig. 2(b); not all peaks
are shown for the sake of clarity. Each peak is labeled by an
integer showing to which generation it belongs.

generation obtained from a different seed in a Fi-
bonacci sequence. For example, generation 2 is ob-
tained using the seed (2,2), generation 3 using (1,3),
generation 4 using (3,3) and so on. In our nearest ap-
proximation to the critical line, Fig. 2(b), more gen-
erations appear in the spectrum and generation 10 can
be identified, although not at the lowest frequencies.

The spectrum in Fig. 3 is divided into bands, each of
which is flanked by two adjacent first-generation
peaks. The amp/itude of the peaks of generation 1 is

nearly constant, although the amplitude of the last
peak is smaller. For generation 2 the decrease in am-
plitude starts earlier. So at least for the first genera-
tion, in this scale representation at the critical point,
the theoretically predicted constant amplitude is ob-
served.

As in the case of the period-doubling route to chaos,
renormalization-group and numerical studies of circle
maps have shown the existence of two numbers,
which reflect the scaling properties of particular irra-
tional routes with periodic continued-fraction rep-
resentations. These numbers, o. and 5, have values
which depend on the irrational number chosen. o. ap-
pears in the fixed-point equation while 5 is the scale
factor by which tongue widths change. More precisely,
if n denotes the nth truncation of the continued frac-
tion representation of an irrational, and Q„represents
the width of the locked state at the critical amplitude,
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FIG. 4. Spectrum and its scaled version (up to generation
3) for a quasiperiodic state with frequency ratio
o-q+2X10 and external pulse amplitude 3 =25.2 mA.
This corresponds to our nearest approximation to the critical
line at this winding number. For this spectrum R = 3.98R, .

then

0„ I
—0„5= lim 0„—0„+g

We have measured 5 for both o-~ and crz' and our
results are shown in Table II. Our values agree well
with the theoretical ones: 5 = 2.833. . . for a.a while
8=6.799 for a.s.

Figure 4 shows the Fourier spectrum and the scaled
spectrum for o-q at the critical point. It sho~s the
same self-similarity observed for a.a. Unfortunately,
o. cannot be calculated simply by composing the rela-
tive heights of lines in the spectrum as in the case of
period doubling, ' and we have not yet been able to ex-
tract it from our data.

Finally, our experiment demonstrates that the criti-
cal value of the forced-oscillator amplitude is larger for
the golden mean than for the silver mean, as shown in
the insets of Fig. 1. In the Arnold diagram the critical
region is thus a curve, whose maximum may occur at
the golden mean.

This work is the first quantitative study of the
commensurate-incommensurate transition for quasi-
periodicity. Its experimental precision allows a de-
tailed study of this rich dynamical system. We are now

concentrating on the supercritical region which allows

the measurements of u, " of the scaling of the
Lyapounov exponent, and a careful study of the fine
structure of phase locking. ' ' We expect a new
behavior to appear far from the critical line.
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