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The first application of the Kemmer-Duffin-Petiau wave equation for spin-0 particles to meson-
nucleus scattering is given. A relativistic impulse approximation using the Kemmer-Duffin-Petiau
formalism is used to calculate meson-nucleus optical potentials. Comparison with the nonrelativis-

tic impulse approximation is given.

PACS numbers: 24.10.Ht, 25.80.—¢

The success of the relativistic impulse approxima-
tion (RIA) in describing proton-nucleus (pA4)!-*
scattering at intermediate energies suggests its use in
treating nuclear reactions employing other probes. In
this Letter we discuss a treatment of meson-nucleus
elastic scattering® using the usual RIA as a guide in
developing the parameter-free optical potentials.
Standard optical-model treatments of meson-nucleus
scattering have generally used the Klein-Gordon (KG)
or Schrédinger equations as the relevant one-body
wave equation. In this Letter we investigate an alter-
native approach using the first-order Kemmer-
Duffin-Petiau (KDP)®-® wave equation which is simi-
lar in form to the Dirac equation. This approach is
motivated by three general considerations. First, the
equation is linear in energy which facilitates the
development of impulse-approximation optical poten-
tials in a manner analogous to the nucleon-nucleus
RIA. Second, the richness of the KDP formalism re-
garding the introduction of interactions is intriguing.’
For example, if the interaction has a conserved vector
current then the KDP formalism gives identical results
to the KG equation for spin-0 projectiles. If the in-
teractions do not have a conserved current or if scalar
interactions are considered, this is not necessarily the
case.? Third, the KDP equation is appropriate for both
spin-0 and spin-1 projectiles.

The free-particle KDP equation® is (f =c=1)

(iB*3,—m)p=0, (1)
where u=0,1,2,3; mis the mass parameter and the B8*
obey!0-11

B BB+ BABY B = g BN + g BH. )
The algebra generated by the four B#’s has three ir-
reducible representations of dimension one, five, and

ten. The five-dimensional representation yields a spin
operator whose eigenvalues are zero, the ten-

dimensional case corresponds to spin one, and the
one-dimensional case is trivial. The first component
of the five-dimensional Kemmer wave function for the
spin-0 case satisfies the Klein-Gordon equation for
massive particles.

In order to apply the KDP formalism to meson-
nucleus scattering we must introduce interactions in
Eq. (1). If one writes

(iﬂ"aﬂ—m—U)¢=O, 3)
the most general form for U contains two scalar, two
vector, and two tensor terms.!'® We omit the tensors
to avoid noncausal effects.!® For the spin-0 case the
scalar operators are the unit operator / and the 5x5
operator P whose elements are all zeros except the
(1,1) element; thus P acts as a projection operator
onto the first component of ¢. The vector operators
are 8* and g* = PB* —B*P. The form for Uis

U=Ul+ UP+B*U,+B*PU,. 4)
The last two terms
B*U,+ PB*U.L.

In order to construct impulse-approximation optical
potentials consistent with Eq. (4) we need an invariant
form for the meson-nucleon ¢ matrix. The choice for
the invariant form used here is

t=InIty+ IyPt +y, B4 1, + v, B4 Ptl, (5)

where Iy and vy, are the unit and Dirac y matrices for
the nucleon. As in the nucleon-nucleus RIA we
equate the matrix elements of the empirical c.m. two-
body scattering amplitude,

F(g)=f(g)+o-nglq), 6)

taken between Pauli spinors for the nucleon with the
matrix elements of the invariant ¢ matrix between
Dirac and Kemmer free-particle spinors. The scatter-
ing amplitude and the invariant ¢ matrix are related by
a 2X4 matrix, and thus certain choices need to be

may also be written as
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made in order to proceed. In fact, the choices could
form the basis of a phenomenology using the KDP
equation. In this work we limit the 7 matrix to only
two of the four possible terms in Eq. (5). Thus, we
consider models with two scalars, two vectors, or a
vector-scalar mixture. For each choice a transforma-
tion matrix K relates tto . For example, for a scalar-

vector mixture
& 2 s2K -1
]= - am Rl ] )

where 572 is the total meson-nucleon energy and m

(M) is the meson (nucleon) mass.

The combination of two scalars or two vectors pro-
duces a matrix K with zero determinant; thus, we con-
sider ¢ to consist of a scalar and a vector amplitude.
There are, however, several choices for the form of ¢
depending on whether the operator P is in both terms
(case 1), in the scalar only (case 2), in the vector only
(case 3), or in neither (case 4). The forms y,PB*,
and y,B*Pt, produce identical results. The elements

ty Mm of K for case 1 are given by
K} =—l————[(E+M)2~k2+-l-q2] Kh=—ol _|Em [(E+M)2+k2—iq1]+-52——
U AM(E+ M) L 2T AME+M) | m 4 2mM’
Kb = kg gy —ikg | Em|_ _ikg
A7 aME+M "2 aME+M | m | dmM’

where E (E,) is the c.m. energy of the nucleon
(meson), ¢ =2K sinf/2, and k = K cosé/2, where 6 is
the c.m. scattering angle and K is the c.m. momentum.
For case 2, Kj =K}, K —2K{,, K} =K3,, and
K% =2K},. For case 3, K{ =2cK}y, K=K},
K3 =2cK}, and K3, =K3,, where c=(1+ ¢%4m?).
For case 4, K{y =K, Kih =2K},, K3 =K3, and
K3 =2Kj},. Note that ¢, and ¢, depend on both f and
g, thus, even in the impulse approximation, the scalar
and vector potentials contain contributions from fand
g The usual first-order nonrelativistic calculation only
contains contributions from f.!2

The invariant amplitudes for each of the four cases
are used to construct optical potentials for use in Eq.
(3). The optical potentials for spin-0 targets are given
by

dq?
U, ,=
K i=2p,n (277)3

where pg,(g) are the Fourier transforms of the rela-
tivistic Hartree densities of Horowitz and Serot.!? De-
tails of the construction of Uy, are given by Clark
et al.'* The KDP equation for meson-nucleus scatter-

et (g)pi,(q), (8)

ing may now be written as

[i,B“a“—A“B"—l/j—m]¢=0, 9
where j=1, 2, 3, and 4 for the four cases used. The
electromagnetic potential A » has been added by
minimal substitution. We take A4 » as the static
Coulomb potential obtained from the empirical charge
distribution. In addition, the spacelike components of
U, do not contribute for spin-0 targets.

The KDP elastic cross sections are obtained by solv-
ing the second-order equation obtained for the first
component of the KDP wave function.!* For con-
served current interactions, such as the electromagnet-
ic interaction, this second-order equation is identical to
the KG equation for electromagnetic interactions.
Here, however, a different second-order equation
results for each case. They are

(E-U—-U)(E-U,)

—m(m+ U)+V?%p, =0 10)
for case 1;

(E-U—-U)~m(m+U)+V21p,=0 (11)
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FIG. 1. Calculated KDP-RIA scalar and vector potentials for case 1. (a) The potentials for K *-*°Ca at 800 MeV/c; (b)
those for = *-*°Ca at 800 MeV/c. The effective central potentials for the cases shown in (a) and (b) are given in (c) and (d)

(solid curves). The NRIA potentials are the dashed curves.
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for case 2;

(E-U~U)E-U)—(m+U)*+V2—Up-Vig;=0 (12)

for case 3; and

(E-U~-U)—(m+U)*+V2—U, -Vie;=0

for case 4. Here
UD=(m+ Us)~IVUs. (14)

The nonlocal Darwin term may be replaced by an
equivalent local term through a wave function
transformation, just as in the second-order Dirac equa-
tion. We could have used the KG equation to develop
RIA potentials. In fact, if we write F=c=1)

[D+m2+2]q§KG=0, (15)
and take
t=t+ (p,y*/ mlt,, (16)

then we obtain results identical to those of case 1 ex-
cept for the presence of the cross term U.U, in the
KDP-RIA.

As a first application of the formalism we considered
elastic scattering of 800-MeV/c beams of K+, &+,
and 7~ from a “%Ca target. The Martin amplitudes!®
were used for the K* and the E100 solutions from
Arndt!® for w* in constructing the invariant ¢ ma-
trices. The elastic cross sections were obtained by
solving the appropriate Klein-Gordon equation.!” We
considered all four cases and found that cases 3 and 4
gave poorer agreement with 7 * data than did cases 1
and 2. At this energy the optical potentials for cases 1
and 2 are almost identical for a given reaction and it is
not possible to choose between them on the basis of
experiment. This is not true for w % scattering at
lower energies where case 1 produces substantially
better agreement with experiment.!* The results for
K * were very similar for all four cases.

Figures 1(a) and 1(b) show the case-1 optical poten-
tials for K*-%Ca and = *-%°Ca at 800 MeV/c. The
scalar and vector potentials are large and tend to cancel
just as in the p4 RIA. The =~ -Ca potentials are al-
most identical to the w¥-%Ca potentials. We write
Egs. (10)-(13) as

;—E[v2+ U?—2EU,+ E?— m?] — u}¢>,=0, an

which allows us to define an effective central potential
U. Figures 1(c) and 1(d) show this potential for the
same two cases. These potentials arise from cancella-
tions between large scalar and vector terms, just as in
the nucleon-nucleus RIA. The corresponding nonrela-
tivistic impulse-approximation potentials are also
shown.!? The kaon effective potentials resemble the
nuclear densities; however, the real pion potentials
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(13)

have very unusual shapes for both cases. The real ef-
fective central pion potentials for cases 1 and 2 agree
beyond 4 fm where they both have a small pocket of
attraction but they are very different for r <4 fm.
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FIG. 2. Calculated KDP-RIA cross sections (solid curves)
for case-1 potentials for K*-Ca and = *-%Ca at 800

MeV/c. The data are from Refs. 18 and 19. The NRIA cal-
culations are given by the dashed curve.
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That the cross sections agree for the two cases is a
consequence of the strong absorption. The imaginary
effective potentials are essentially the same in the two
cases.

Figure 2 shows the calculated K *-*°Ca cross section
for case-1 potentials, along with the measured cross
sections from Marlow et al.!®* For the kaon all four
choices produce essentially identical cross sections.
The calculated cross sections for 7 * for cases 1 and 2
are also very similar; however, cases 3 and 4 are in
much poorer agreement with experiment. Also shown
in Fig. 2 are the 7 ¥ case-1 results along with the mea-
sured cross sections from Marlow et al.'® The dashed
curves in Fig. 2 are nonrelativistic impulse-
approximation (NRIA) calculations using the
Schrédinger equation with relativistic kinematics!? and
the same input amplitudes and densities (vector densi-
ties only). The transformation of the two-body
meson-nucleon amplitudes to the c.m. frame is accom-
plished in an analogous manner to the p4 NRIA calcu-
lation.?® The K *-nucleon spin-dependent amplitude g
is very small at this energy. Because of this one would
expect KDP and NRIA calculations to be quite similar,
and this is the case. For the = ¥ nucleon amplitude, g
is not small, and the differences between KDP and
NRIA are larger, especially at small angles for the 7~
case. In addition, the presence of the cross term U, U,
in the KDP appears to improve the agreement with ex-
periment at small angles.

We have presented a new treatment of meson-
nucleus scattering using the KDP formalism. This for-
malism has the advantage of preserving the Lorentz
character of the interaction, and allows the construc-
tion of RIA optical potentials. We are currently apply-
ing the KDP formulation to the scattering of spin-1
probes.2! We have recently learned that the formalism
introduced here is being considered for descriptions of
inelastic meson-nucleus scattering.??
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