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A quantum-mechanical model for the emission of fast nucleons in low-energy nucleus collisions
is presented. The role of a classical emission function is shown to be played by the time derivative
of an impact-parameter—integrated, time-dependent, distorted-wave Wigner function. Correlations
between the emitted particles are shown to be caused by the Pauli principle, by the impact-
parameter dependence of the emission process, and by two-body collisions including the final-state
interactions, as well as those due to the size of the emitting source.
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In the collision of two nuclei at energies near the
Coulomb barrier, there is a component of light-particle
emission which is nonstatistical in nature and will
hopefully serve as a probe of the early stages of the
reaction. Recently, the correlations between two pro-
tons have been measured! at these energies. For the
emission of two photons from a source of finite dimen-
sions,? the correlations between observed particles
serves as a direct measurement of the size of the
source. For high-energy nuclear collisions where a
classical treatment is valid, the same general physics
has been applied® to determine the spatial extent of the
emitting region.

However, at low collision energies, the energy of the
emitted particles is of the order of 20 MeV or less.
This implies that the motion of the particles should be
treated quantum mechanically. In this case, the rela-
tion of the observed correlations among the emitted
particles to the size of the emitting source will be less
direct. The purpose of this Letter is to examine the
sources of correlations between promptly emitted par-
ticles in ion reactions. We derive general formulas for
the inclusive cross sections for the emission of one
and two particles. The derivation follows closely that
of an external mean-field emission model that we have
presented®® previously. However, the derivation is
given here in a general context without specific refer-
ence to the dynamics of the emission process.

In the quantum-mechanical treatment we identify
the function that serves the role of a classical emission
function as the time derivative of a distorted-wave,
time-dependent, impact-parameter—integrated Wigner
function. For the inclusive, two-particle emission
spectrum we find several modifications to the simple

classical model proposed in Ref. 3. In addition to
correlations which arise from the spatial extent of the
source, we find that there are correlations which are
caused by (1) the Pauli exchange between the two par-
ticles, (2) the impact-parameter dependence of the
emission process, and (3) residual interactions, either
those present in the incident nuclei or those dynami-
cally induced during the collision. Of the latter type of
correlations, the final-state interactions are found to be
important and enter differently in the quantum-
mechanical treatment than in the classical problem. In
addition, the relation between the correlations and the
size of the emitting region is rendered less direct by
the distortions of the outgoing final waves.

We first derive a general expression for the inclusive
cross section for nucleon emission. We intentionally
do not choose a specific model for the dynamics of the
emission process but derive, under some general as-
sumptions, the relation of the differential cross section
to the Wigner function, a formal result which is not
specifically dependent on the treatment of the dynam-
ics. The first assumption we make is that there is a
variable R that can be associated asymptotically with
the separation of the centers of the two ions for which
the classical limit may be taken. The process and the
validity of taking a classical limit for R to yield a classi-
cal variable R(7) is discussed in Ref. 5. Under this
general assumption the motion of the nucleons will be
described by a time-dependent Schrédinger equation
in which R(¢) appears parametrically,

i(d/90)¥, (1) =H(R(D)IV,(2). 1)

where b is the impact parameter associated with R(7).
A technique which can be used to systematically
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solve Eq. (1) has been presented by Baranger and
Zahed.® In their approach, we require a basis, generat-
ed by hydd=E,$Y, and a time-dependent basis gen-
erated by i(8/8t)¢,(t)=hn(R(t)),(¢), with the
boundary condition that ¢, (¢) — ¢ as t— —oo. The
many-body problem of Eq. (1) is then to be solved
perturbatively around the Hamiltonian Hy(R(¢))
which is the 4-body sum of the single-particle Hamil-
tonians, #(R(¢)). Typical diagrams that might enter
an approximate solution of Eq. (1) are presented in
Fig. 1 where the meaning of the diagrams is that of
Ref. 6.

Following Ref. 5, a current operator and differential
cross section can be defined if we require that
h(R(t)) approach hg in the limit t— + oo. Preequili-
brium particles have been seen in time-dependent
Hartree-Fock calculations,” but because the single-
particle Hamiltonian in that theory does not satisfy this
last assumption, our derivation cannot be applied
there. The result for the differential cross section is

dPo
dk

= (2#)—2’_13Y§_1°°fb db(‘pb(t) |a£(_)ak(_)l\lfb(t)),
2

where the operator a;(_) is the creation operator for
the state ¢f(—) (a scattering state from the set ¢9).
The derivation of this equation follows the logic of
that given in Ref. 5, but requires only the assumptions
outlined above. The result, Eq. (2), is independent of
the specific treatment of the dynamics of the emission
process.
The classical source function is defined? by

a—ld—"—fdtfd3R D(k,R,0),
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FIG. 1. (a) The summation of the interactions produces

the time-dependent basis, ¢,(#). (b) The interaction of two
nucleons in a nucleus before the collision which would build
correlations into the incident nuclei in the usual time-
independent perturbation theory. (c) The exchange of a nu-
cleon between the target and the projectile. (d) A two-body
collision between a nucleon in the target and one in the pro-
jectile. (e) The final-state interaction between the two
detected particles. The time ¢ represents the time at which
the two nuclei begin to interact; #, the time when they cease
to interact. The heavy dark line could represent either a
phenomenological two-body interaction or the ladder sum of
these interactions into a Bethe-Goldstone (here, time-
dependent) reaction matrix.

(3)

where D (k, R,?) represents the probability of a particle being emitted at a time ¢ from a position R with a momen-
tum k. To rewrite Eq. (2) in a form that can be related to Eq. (3), we use the time-dependent and impact-
parameter—dependent density matrix defined by (r;lp,(¢)|r;) = (‘Ifb(t) [6" Cr) W (r) W, (2)), where () is the
nucleon field operator. If we define a time-dependent and impact-parameter—dependent Wigner function by

W,,(R,p;t)=fd3rexp(ip ‘1) (R+1/2lpp () IR—1/2), “4)
and define a distorted-wave Wigner function by
W R,p) = [ &rexp(—ip-0)dl o) (R+1/D -, (R—1/2), (5)

the inclusive single-particle emission cross section can be written as

Rf W)3’11wa dt Wi (R,p) 5

The lower limit, t = — oo, does not contribute as a result of the orthogonality between the continuum states and
the bound states of 4;. Comparison of Eqs. (3) and (6) yields

W,,(R p;t). (6)

oD (kR =2m) 2 [ bab [ L2y (R, P4 W, (R, p30) = (2m) =2 f b db Dy (k, R.1). ™

Q2 )3
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We thus see that under the general conditions of our derivation one can define a classical source function even
though the particle motion is being treated quantum mechanically.

The Wigner function, W; (R, p;t), is characterized by a size which would represent the size of the emitting re-
gion. The particle spectrum is characterized by a different size since one must fold with the distorting Wigner
function, Wk (R,p). In the limit that |k| >> kg, with kg the Fermi momtentum, one might approximate the
scattered waves by plane waves, which yields

oD (kR0 =2m) 2 bab LW, (R p;1). (8)

This is an intuitive and appealing expression but is not valid for preequilibrium particles in low-energy reactions.
In this case |k| < kg and the lack of orthogonality between the plane waves and the bound-state wave functions
would produce emission even when the impact parameter were so large as to imply that the ions do not interact.

In addition to the inclusive single-particle spectrum, the inclusive two-particle spectrum is of interest and will be
given, under the same assumptions which were used in the derivation of Eq. (2), by

_d'o

&k dp
The question that arises is whether the correlations between the two particles are simply related to the size of the
emitting source? In order to address this question, it is convenient to become more specific concerning the

dynamics of the emission process. We will specialize at this point to the mean-field model of Refs. 4 and 5, in
which case

=2m)~? hm fbdb(‘l’b(t)|ap(_)ak(_)ak(_)ap(_)]‘l’,,(t)) 9)

A A A 2
(‘I’b(t)IaJ(_)az(_)ak(_)ap(_)]‘lf,,(t))= 2 ICvk(b)lz 2 |C#p(b)’2— 2 C:k(b)cvp(b) , (10)
v=1 p=1 v=1
where C,(b) is given by
Col0) = lim [ @ éQt_y ()6, (r,0). 11
t— +oo
The inclusive two-particle emission spectrum becomes
d()
ﬁ—Qw)'Sfbdb{Db(R 0Dy (R,p) — 3 Ch (5)CS (b)|2} (12)
v=1

This expression implies two sources of correlations beyond those which are present in the product of two source
functions. The first is the exchange term which is an expected result of the Pauli principle and the identity of the
emitted particles. The second is a correlation which arises because the emission process is impact-parameter
dependent. The expression is the integral over a single impact parameter of the product of two impact-
parameter—dependent source functions, not the product of two source functions which have already been averaged
over individual impact parameters. In addition, one could include the additional physics that is pictured in Fig. 1 in
the solution of Eq. (1). One would then have additional correlations corresponding to the following: Fig. 1(b),
correlations which were already present in the two nuclei; Fig. 1(c), the exchange of particles between the two nu-
clei; and Fig. 1(d), two-body collisions between a nucleon in the target and one in the projectile.

Of the additional correlations pictured in Fig. 1, the final-state interactions of Fig. 1(e) will be important for par-
ticles with a small relative velocity. This interaction becomes relatively easy to calculate if one utilizes the wave-
packet formulation of Ref. 5. For times greater than f, the Hamiltonian #(R(z)) has become equal to kg and we
are dealing with a time-independent problem. We also notice that for large times a wave packet made up of the
states ¢y () (2 evolves simply into a wave packet composed of plane-wave? states. Thus, the ladder sum of the
two-nucleon interaction for times greater than ¢ yields a free two-body scattering wave function. The two-particle
inclusive cross section is then given by

o _ &k _dp &Lk _d&Pp
dk dp (2m)? (2m)? (2m)? (2m)

5 lllk(-)(k” p”)lll*(_)(k’,pl)

X <‘I’b(t) laTn(_)a;u(_)ak((_)ap/(_)]‘lfb(l‘)) R (13)

where dzk p) (k’, p') is the free nucleon-nucleon scattering wave function.
In Fig. 2 we plot the correlation function for two-neutron emission in the reaction 1°0 +%Nb at E,, = 204 MeV.
The dynamic model used to produce this graph is the mean-field model of Ref. 5. The correlation function is de-

586



VOLUME 55, NUMBER 6

PHYSICAL REVIEW LETTERS

5 AUGUST 1985

2.5
r

2.0 I,‘
.t/ \
LR
2 \\\
AR

I
© [o] 0.4 0.8 1.2 1.6 2.0

p(fm™*)

FIG. 2. Two-particle cross sections & (p) without final-
state interactions (solid curve) as a function of the relative
momentum. The dashed curve shows the same quantity
with the inclusion of the final-state interactions (divided by
100).

fined by

do
— _ 3 e v
()= [ a'0 — st (14)
with Q=Kk+p and q= (k—p)/2. In order to simplify
the multidimensional integration in Eq. (13), we have
used a local momentum approximation®

Ui (K, p)
= (2m)%(k—k)s(p—p)fi(—lql), (@15

where f;(—|ql) is the Jost function. We have used
the separable Yukawa potential® to generate the Jost
function. The correlations we see predicted here for
two neutrons are of a similar character as those seen
for protons.!

We have shown how the time derivative of a
distorted-wave Wigner function, Eq. (7), serves the

role of a classical source function for the emission of
preequilibrium particles in heavy-ion collisions. The
distortion factor implies that if one extracts a size for
the emitting region from experimentally measured
cross sections, the results will be a combination of the
range associated with the emitting source and the
range associated with the distortions. We have found
several sources of correlations between promptly emit-
ted particles. In addition to the correlations which
arise from the size of the source and the distorting po-
tential, there are Pauli correlations, correlations which
arise from the impact-parameter dependence of the
emission process, and dynamic correlations including
the final-state interactions.
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