Polarization Effects in ρ^0 -Meson Production in Antiproton-Proton Interactions at 22.4, 12, and 5.7 GeV/c

B. V. Batyunya,⁽²⁾ I. V. Boguslavsky,⁽²⁾ E. G. Boos,⁽¹⁾ N. B. Dashian,⁽²⁾ R. K. Dementiev,⁽⁵⁾ D. I. Ermilova,⁽⁵⁾ I. M. Gramenitsky,⁽²⁾ I. Herynek,⁽⁶⁾ I. A. Korzhavina,⁽⁵⁾ G. O. Kuratashvili,⁽⁸⁾ R. Lednický,⁽²⁾ E. M. Leikin,⁽⁵⁾ R. Leitner,⁽⁷⁾ S. V. Levonian,⁽²⁾ M. Lokajíček,⁽⁶⁾ J. Patočka,⁽⁴⁾
A. G. Puzyrny,⁽⁵⁾ J. Řídký,⁽⁶⁾ V. I. Rud,⁽⁵⁾ V. V. Samoilov,⁽¹⁾ V. Šimák,⁽⁶⁾ P. Staroba,⁽⁷⁾ M. Suk,⁽⁷⁾
T. Temiraliev,⁽¹⁾ L. A. Tikhonova,⁽⁵⁾ T. P. Topuriya,⁽⁸⁾ V. D. Tsintsadze,⁽⁸⁾ A. Valkárová,⁽⁷⁾
J. Vávra,⁽⁶⁾ P. Villanen,⁽³⁾ V. Vrba,⁽²⁾ E. Walck,⁽³⁾ B. M. Whyman,⁽⁹⁾ and Z. Zlatanov⁽²⁾

⁽¹⁾Institute of High Energy Physics of the Academy of Sciences of the Kazakh Soviet Socialist Republic,

Alma-Ata, Union of Soviet Socialist Republics

⁽²⁾ Joint Institute for Nuclear Research, Dubna, Union of Soviet Socialist Republics

⁽³⁾Department of High Energy Physics, University of Helsinki, Helsinki, Finland

⁽⁴⁾P. J. Šafarík University, Košice, Czechoslovakia

⁽⁵⁾Nuclear Physics Institute, Moscow State University, Moscow, Union of Soviet Socialist Republics

⁽⁶⁾Institute of Physics, Czechoslovak Academy of Sciences, Prague, Czechoslovakia

⁽⁷⁾Nuclear Centre, Charles University, Prague, Czechoslovakia

⁽⁸⁾ Tbilisi State University, Tbilisi, Union of Soviet Socialist Republics

⁽⁹⁾Oliver Lodge Laboratory, Liverpool, Great Britain

(Received 6 February 1985)

The ρ^0 -meson spin alignment is studied in $\overline{p}p$ interactions at 22.4 and 12 GeV/c and in the reaction $\bar{p}p \rightarrow 2\pi^+ + 2\pi^- + \text{neutrals at 5.7 GeV/c}$. An essential ρ^0 -meson spin alignment is observed. The values of the $\rho_0^{T_0}$ element of the ρ^0 -meson spin-density matrix in the transversity frame are 0.56 ± 0.07 , 0.53 ± 0.05 , and 0.54 ± 0.04 for the above-mentioned interactions, respectively. An increase of ρ_{00}^T with ρ^0 transverse momentum is obtained.

PACS numbers: 13.85.Ni

Study of the spin dependence of multiparticle production is of considerable interest as a result of the observation of an unexpected strong polarization effect in many experiments at high energies.¹ We present results of an investigation of the spin effects in ρ^0 meson production in $\overline{p}p$ interactions at 22.4, 12, and 5.7 GeV/c. In a preliminary study² of the reaction $\overline{p}p \rightarrow \rho_0 + X$ at 22.4 GeV/c we have obtained an indication of ρ^0 -meson spin alignment at the level of 2 standard deviations, and we confirmed this result later.³ In this analysis we have used about 45 000 and 90 000 events (1.2 and 2.2 events per microbarn) of $\bar{p}p$ interactions at 22.4 and 12 GeV/c, respectively, and about 35000 events (3.3 events per microbarn) of the reaction $\overline{p}p \rightarrow 2\pi^+ + 2\pi^- + \text{neutrals}$ at 5.7 GeV/c. Preliminary results have already been published.⁴ The data are from the exposures of the 2-m hydrogen bubble chamber at CERN (5.7 and 12 GeV/c) and the Joint Institute for Nuclear Research 2-m hydrogen bubble chamber at Serpukhov (22.4-GeV/c data) by rf-separated antiproton beams. For the data at 12 and 22.4 GeV/c all charged particles, except the protons identified by ionization $(p_{lab} < 1.2 \text{ GeV}/c)$ and negative particles with the longitudinal variable x > 0.6, have been considered as pions. Other details of the experiments can be found elsewhere.⁵⁻⁷

The angular distributions of the pions from ρ^{0} meson decays (i.e., the ρ^0 -production cross sections in the intervals of the decay angles) have been obtained

by fitting the $\pi^+\pi^-$ effective-mass distributions over a range $0.6-0.9 \text{ GeV}/c^2$ for separate angular intervals. The standard fitting formula accounting for contributions of ρ^0 meson and combinatorial background has been used:

 $d\sigma/dM$

$$= \sigma_{\rho} f_{\rho, BW}(M) f_{bkg}(M) / I_{\rho} + \sigma_{bkg}(M) / I_{bkg}, \quad (1)$$

where σ_i and I_i are the corresponding cross sections and normalization integrals,

$$f_{\rho, BW}(M) = \Gamma(M) (M/q) / [(M^2 - M_{\rho}^2)^2 + M_{\rho}^2 \Gamma^2(M)]$$

is the relativistic p-wave Breit-Wigner function, $\Gamma(M) = \Gamma_{\rho} [q/q(M_{\rho})]^3 (M_{\rho}/M)$, and q = q(M) is the decay momentum. The exponential background parametrization $f_{bkg}(M) = q \exp(-\beta M)$ has been used, where the factor q takes into account the phase space. Three free parameters have been fitted: the background slope β and the cross sections σ_i . The ρ^0 width Γ_{ρ} and mass M_{ρ} have been fixed at the values 155 and 770 MeV/ c^2 , respectively. In the case when the ρ^0 mass has been treated as a free parameter, the fits of the total $\pi^+\pi^-$ effective-mass spectra (Fig. 1) yield $M_{\rho 0}$ values equal to 776 ± 3, 767 ± 4, and 764 ± 6 MeV/ c^2 for 5.7-, 12-, and 22.4-GeV/c data, respectively. In Fig. 2 we present the cosine of the polar-

FIG. 1. Effective-mass distributions of $\pi^+\pi^-$ pairs produced in the reaction $\bar{p}p \rightarrow \pi^+\pi^- + X$ at 22.4 and 12 GeV/c and $\bar{p}p \rightarrow 2\pi^+ + 2\pi^-$ + neutrals at 5.7 GeV/c. The curves represent the results of the fits by Eq. (1) in the mass interval 0.6–0.9 GeV/c².

angle θ_T distributions of the π^+ meson from the ρ^0 meson decay in the transversity frame; the z axis is directed along the normal $\mathbf{n} = \mathbf{p}_{\overline{p}} \times \mathbf{p}_{\rho}$ to the production plane. All the $\cos\theta_T$ distributions are essentially different from the uniform one, with minimum at $\cos\theta_T = 0$. See also Fig. 3, where the same effect is displayed in more detail for the reaction $\bar{p}p \rightarrow 2\pi^+ + 2\pi^- +$ neutrals at 5.7 GeV/c. Since the $\cos\theta$ distribution in the decay $\rho \rightarrow \pi\pi$ has the form

$$\frac{d\sigma}{d\cos\theta} = \frac{1}{2}\sigma \left[1 + \frac{1}{2}(1 - 3\rho_{00})(1 - 3\cos^2\theta)\right], \quad (2)$$

this implies a large $(>\frac{1}{3})$ probability ρ_{00}^T of the zero ρ^0 -meson spin projection on the normal to the reaction plane. As is seen from Table I, the deviation from the uniform $\cos\theta_T$ distribution $\left(\rho_{00}^T = \frac{1}{3}\right)$ is about 3, 4, and 5 standard deviations for \overline{pp} data at 22.4, 12, and 5.7 GeV/c, respectively. We have also analyzed the $\cos\theta$ distributions in several frames with the z axes lying in the reaction plane: In the Gottfried-Jackson frame the z axis is directed along the beam (target) momentum in the rest frame of ρ^0 produced in the forward (backward) c.m. system hemisphere, in the s-channel helicity frame, along the c.m. system ρ^0 momentum, and in the Adair frame, along the c.m. system reaction axis. All these distributions have been found opposite in character (maximum at $\cos\theta = 0$) as compared with the $\cos\theta_T$ distributions. This implies a small $(<\frac{1}{3})$ corresponding ρ_{00} value (see Table I). Note that the ρ_{00}^{T} can be expressed through the ρ^{0} spin-density matrix elements in any frame with the z axis lying in the reaction plane in the form $\rho_{00}^T = \rho_{11} + \rho_{1,-1}$, where $|\rho_{1,-1}| \leq \rho_{11} \leq \frac{1}{2}$ (we assume parity conservation in the ρ^0 -production process). It then follows that a large ρ_{00}^T value requires a small value of $\rho_{00} = 1 - 2\rho_{11}$; e.g.,

FIG. 2. ρ^0 -decay angular distributions in the transversity frame $(\hat{\mathbf{z}} || [\mathbf{p}_{\bar{p}} \times \mathbf{p}_{\rho}])$ for the reactions $\bar{p}p \rightarrow \rho^0 + X$ at 22.4 and 12 GeV/*c* and $\bar{p}p \rightarrow \rho^0 \pi^+ \pi^-$ + neutrals at 5.7 GeV/*c*. The curves represent the results of the fits by Eq. (2).

FIG. 3. ρ^0 signal in the effective-mass distributions of $\pi^+\pi^-$ pairs produced in various $\cos\theta_T$ intervals in the reaction $\bar{p}p \rightarrow 2\pi^+ + 2\pi^- + \text{neutrals at 5.7 GeV}/c$ after subtraction of the fitted background [the second term in Eq. (1)].

 $\rho_{00}^T = \frac{2}{3}$ requires $\rho_{00} \leq \frac{1}{3}$. The data of Table I satisfy this constraint. For checking the reliability of our inclusive analysis we have simulated Monte Carlo events according to the cylindrical phase space, taking into account the leading-particle effect and resonance production (assuming their isotropic decays). The simulation parameters have been chosen to achieve approximate description of the experimental one-particle characteristics as well as the $\pi^+\pi^-$ effective-mass spectra. Applying the same fitting procedure to the Monte Carlo events, we have reproduced the ρ^0 cross sections and the decay angular distributions. It should be pointed out that as a result of the cylindrical shape of the phase space the background $\cos\theta_T$ distribution behaves in an opposite way as compared with the observed effect (Fig. 2). The corresponding anisotropy is getting smaller with decreasing energy and $\pi^+\pi^$ effective mass. Thus, at 5.7 GeV/c this distribution is only weakly changing in the mass region 0.6-0.9 GeV/c^2 (being close to the uniform one). This circumstance, as well as a relatively large signal-to-

FIG. 4. Angular distribution of π^+ mesons in the transversity frame for $\pi^+\pi^-$ pairs in the reaction $\overline{pp} \rightarrow 2\pi^+ + 2\pi^- + \text{neutrals at 5.7 GeV/c:}$ (a) in different $\pi^+\pi^-$ effective-mass intervals; (b) in $\rho^0 \rightarrow \pi^+\pi^-$ decay, obtained by subtraction of the distributions in (a); the curve represents the result of the fit by Eq. (2).

background ratio for the data at 5.7 GeV/c, make it possible in this case to obtain the $\cos\theta_T$ distribution in the $\rho^0 \rightarrow \pi^+ \pi^-$ decay also by the simple subtraction method using the $\cos\theta_T$ distributions for $\pi^+\pi^-$ combinations in the ρ^0 mass region and in the adjacent regions (Fig. 4). The resulting value $\rho_{00}^T = 0.50 \pm 0.05$ agrees with the corresponding value in Table I. At higher primary momenta the background $\cos\theta$ distribution is rapidly changing with increasing mass and cannot be subtracted without detailed knowledge of its mass dependence. For the 12- and 22.4-GeV/c data we have checked the influence of K^{\pm} , \bar{p} , and p misidentification and reflections of K^{*0} , \bar{K}^{*0} , Δ^{0} , and $\overline{\Delta}^0$ decays, and it was found that the observed ρ^0 -spin alignment could only be slightly weakened. For 22.4-GeV/c data the K_S^0 mesons and identified protons were used for quantitative estimates as well. The resulting corrected value $\rho_{00}^T = 0.59 \pm 0.08$ is in agreement with the value given in Table I. It should be noted that the simple exponential background parametrization ensures a good description of the $\pi^+\pi^-$

TABLE I. Fitted values of ρ_{00} and (in parentheses) $\chi^2/d.o.f.$ for the reactions $\bar{p}p \rightarrow \rho^0 + X$ at 22.4 and 12 GeV/c and $\bar{p}p \rightarrow \rho^0 \pi^+ \pi^-$ + neutrals at 5.7 GeV/c.

p_{lab} (GeV/c)	Transversity frame	Gottfried-Jackson frame	Helicity frame	Adair frame
5.7	$0.54 \pm 0.04 \ (\frac{8}{6})$	$0.21 \pm 0.04 \ (\frac{3}{6})$	$0.25 \pm 0.04 \ (\frac{7}{6})$	$0.24 \pm 0.04 \ (\frac{10}{6})$
12	$0.53 \pm 0.05 \ (\frac{10}{6})$	$0.15 \pm 0.05 \ (\frac{12}{6})$	$0.27 \pm 0.05 \ (\frac{3}{6})$	$0.15 \pm 0.05 \ (\frac{12}{6})$
22.4	$0.56 \pm 0.07 \ (\frac{9}{6})$	$0.19 \pm 0.08 \ (\frac{5}{6})$	$0.29 \pm 0.08 \ (\frac{7}{6})$	$0.33 \pm 0.08 \ (\frac{4}{6})$

FIG. 5. p_{\perp}^2 dependence of ρ_{00}^{T} and ρ^0 meson produced in the same reactions as in Fig. 2.

effective-mass spectra in the narrow mass region quoted above. In wider mass intervals, however, a more complicated background parametrization, e.g., $f_{bkg} = q^{\alpha} \exp(-(\beta M))$, could be required. Also, contributions of, e.g., f^0 and the reflection of the $\omega \rightarrow \pi^+ \pi^- \pi^0$ decay should be taken into account. The uncertainty of the background form may cause systematical errors in ρ_{00} values. E.g., we have found systematically smaller ρ_{00}^T values in the case when the $\rho + f$ mass interval (0.55-1.5 GeV/c²) was analyzed ($\Delta \rho_{00}^{T} \approx -0.1$ at 22.4 GeV/c). This partly explains the small ρ_{00}^T value ($\rho_{00}^{T} = 0.26 \pm 0.04$) obtained in a similar analysis of $\overline{p}p$ data at 32 GeV/c.⁸

Note that the $\cos\theta$ distributions in the reaction $pp \rightarrow \rho^0 + X$ at 24 GeV/c practically coincide with the uniform one $(\rho_{00}^T \simeq \frac{1}{3}).^9$ This and the dominant contribution of annihilation channels in the reactions $\overline{p}p \rightarrow \rho^0 \pi^+ \pi^-$ + neutrals at 5.7 GeV/c (~100%) and $\overline{p}p \rightarrow \rho^0 + X$ at 12 GeV/c (~70%), as well as large annihilation contribution in the reaction $\overline{p}p \rightarrow \rho^0 + X$ at 22.4 GeV/c (\sim 50%), make it possible to connect the observed ρ^0 -spin alignment mainly with the annihilation mechanism. We should be careful, however, to attribute the difference of the ρ^0 yields in $\overline{p}p$ and pp interactions to annihilation reactions only. E.g., in the quark fusion model,¹⁰ the difference $(\overline{p}p - pp) \rightarrow \rho$ corresponds to the fusion of valence quark and antiquark which can contribute to both $\overline{p}p$ annihilation and nonannihilation. A study of the spin-alignment effects in nonannihilation channels might be interesting in this context. With the assumption of no ρ^0 -spin alignment in nonannihilation channels, a rough equality of the measured ρ_{00}^T elements for 5.7-, 12-, and 22.4-GeV/c data indicates an increase of ρ_{00}^T in annihilation channels with increasing energy (in annihilations at

22.4 GeV/c the estimated value of ρ_{00}^T would reach ~ 0.7). If such an increase saturates at ~ 20 GeV/c, we can predict a decrease of ρ_{00}^T for $\bar{p}p$ interactions at higher energies due to decreasing annihilation fraction (e.g., $\rho_{00}^T \sim 0.45$ at ~ 30 GeV/c). Models for polarization mechanism in $\bar{p}p$ interactions have been discussed elsewhere.¹¹⁻¹³

For further understanding of the dynamical origin of the observed polarization effect we present in Fig. 5 the p_{\perp}^2 dependence of ρ_{00}^T . A significant increase of ρ_{00}^T with p_{\perp}^2 for 5.7- and 12-GeV/c data is observed. Similar behavior has been seen for hyperon polarization in nucleon-fragmentation reactions.¹

We wish to thank the CERN-Prague Collaboration for their $\overline{p}p$ data at 5.7 GeV/c and the Amsterdam-Helsinki-Liverpool-Stockholm Collaboration for their 12-GeV/c $\overline{p}p$ data.

¹See, e.g., *High Energy Spin Physics*-1982, edited by G. M. Bunce, AIP Conference Proceedings No. 95, Subseries No. 28 (American Institute of Physics, New York, 1983).

²D. I. Ermilova *et al.* (Ludmila Collaboration), Nucl. Phys. **B137**, 29 (1978).

³B. V. Batyunya *et al.* (Ludmila Collaboration), Czech. J. Phys. Sect. B **31**, 1353 (1981), and in *Multiparticle Dynamics 1981*, edited by W. Shepard and V. Kenney (World Scientific, Singapore, 1982), p. 201.

⁴B. V. Batyunya *et al.* (Ludmila Collaboration), contributed to Proceedings of the Twenty-Fifth International Conference on High-Energy Physics, Paris, 26–31 July 1982 (unpublished), paper No. 0627.

⁵E. G. Boos *et al.* (Ludmila Collaboration), Nucl. Phys. **B121**, 381 (1977), and **B174**, 45 (1980).

⁶P. Johnson *et al.* (Amsterdam-Helsinki-Liverpool-Stockholm Collaboration), Nucl. Phys. **B173**, 77 (1980); B. M. Whyman *et al.* (Amsterdam-Helsinki-Liverpool-Stockholm Collaboration), Z. Phys. C **12**, 203 (1982).

⁷H. W. Atherton *et al.*; Nuovo Cimento **A30**, 505 (1975), and Nucl. Phys. **B103**, 381 (1976), and **B113**, 378 (1976); J. Cvach and V. Šimák, Czech. J. Phys. Sect. B **30**, 72 (1980).

⁸V. V. Babintzev *et al.* (France–U.S.S.R. and CERN–U.S.S.R. Collaboration), Yad. Fiz. **39**, 1189 (1984) [Sov. J. Nucl. Phys. **39**, 750 (1984)].

⁹V. Blobel *et al.*, Phys. Lett. **48B**, 73 (1974); a more detailed comparison of $\overline{p}p$ and pp data, using the same method of analysis, will be published elsewhere.

¹⁰V. V. Kniazev *et al.*, Institute for High Energy Physics, Serpukhov, Report No. 77-106, 1977 (unpublished); P. V. Chliapnikov *et al.*, Nucl. Phys. **B148**, 400 (1979); S. Nandi *et al.*, Phys. Rev. D **17**, 1336 (1978).

¹¹J. Ftáčník et al., Czech. J. Phys. Sect. B 33, 889 (1983).

 12 A. V. Efremov and O. V. Teryaev, Joint Institute for Nuclear Research Report No. JINR P2-82-832, 1982 (to be published).

¹³R. Lednický, Czech. J. Phys. Sect. B **33**, 1177 (1983), and Z. Phys. C **26**, 531 (1985).