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Permanent Quark Confinement in Four-Dimensional Hierarchical Lattice Gauge
Theories of Migdal-Kadanoff Type
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Permanent quark confinement is established for four-dimensional hierarchical lattice gauge
theories in which the Migdal-Kadanoff approximate renormalization recursion formulas hold exact-
ly. This holds for gauge groups G = SU(Ã) as well as G = U(N).
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In spite of tremendous efforts made by many peo-
ple, a rigorous proof of permanent quark confinement
in four-dimensional (4D) non-Abelian lattice gauge
theories is still not in sight. The rigorous real-space
renormalization-group method' is presumably most
promising, but it is incredibly difficult to define block
spins for group variables. z 3

I recently constructed hierarchical lattice gauge field
models where the Migdal-Kadanoff approximate
renormalization-group methods work precisely, and
thus the block-spin transformations have simple closed
forms in these systems. These systems may look quite
artificial, but surprisingly enough it turned out that
they do fairly well as the first approximation. In this
Letter, I show that quark confinement is realized in
these systems of gauge group G = SU(N) or
G=U(N). The proof is rather subtle and depends
only on the fact that the gauge G = SU(N) is compact
and contains the Cartan subgroups U(1) ', and can
be analytically continued. Therefore these approxi-
mate formulas do not distinguish Abelian groups from
non-Abelian ones. I thus believe that it is very impor-
tant to find a missing link which connects the real sys-
tems and these approximate ones. This problem is
now under intensive consideration.

The hierarchical lattice gauge theories in four
dimensions are made as follows (Ref. 4; see also Grif-
fiths and Kaufman9 and Collet and Eckmann9): (i)
Use a kind of temporal gauge. Set G 3vb=1 for all
(vertical) bonds b = (x,x+ e3) and b = (x,x+ e4),
where e„ is the unit vector in the p, direction. (ii) For
plaquettes p on the xt-x2 planes, there correspond the
standard Wilson actions A~=P Re Tr(v~ —1), where
vp lI b f bpvb. (iii) If p = 0 for all other plaquettes on
x;-x~ planes with (i,j)&(1,2), the system is just a set
of 2D lattice gauge theories which are exactly soluble.
So we glue them together in a hierarchical way: For
plaquettes p on other planes, set P = 0 or P = ~ in
P Re Tr(v~ —1) depending on where they are. [These
plaquette actions take the form pReTr(vbvb, —1),
where b and b' are parallel nearest-neighbor bonds
contained in two different xt-x2 planes. So P= ~

'kf(n+1) (v) ~—t ) ][ [
f(n) (v ) J[ [ dv (I)

pCA b 6 Ao
t

where A is a block plaquette of size A. && A. (in the units
of X"), p are unit plaquettes in A (in units of A. "),
b C Ao are internal bonds, ~ is the constant chosen so
that f("+')(1)= 1, and dv is the normalized Haar
measure on G. vllb & bA bv(ordered along t)A) plays
a role of the block spin, and of course,f o)(v) =exp[pReTr(v —1)] is the starting point. I
wish to show that the effective Wilson action
lnf ")(v) at the distance scale A.

" tends to zero as

(a) (b)

FIG. l. (a) Unit plaquette on an xt-x2 plane. (b) Block
plaquette on an xt-x2 plane. (c) X (=2 ) block plaquettes
coming from different xl-x2 planes are combined with their
boundaries identified (through the P = ~ couplings). inter-
nal bonds are independent (by the P =0 couplings). (d)
Construct the next block plaquette (of size A.

2
&& ) 2) from (c),

and iterate.

means that vb and v, are identified. ] See Ref. 4 for
the details. This construction may be well understood
by Fig. 1, which explains how the block-spin transfor-
mations are carried out in these hierarchical lattices (of
Migdal type), and corresponds to A. =2 and D=4 in
Ref. 4.

Thus this system obviously satisfies the following
recursion formulas:
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n ~. By an easy gauge transformation, I have

f(n+ 1) (v) ~—1 [ f(n) (vv —1). . . jn) (v v
—I )f(n) (v ) Iidv ]r

~J
(2)

where r = k2. This is a well-known Migdal recursion formula in spin systems. The recursion formulas of Kadanoff
type are obtained from similar hierarchical lattices; see Refs. 4 and 9. Without loss, I can set X=J2 and I have
two types of recursion formulas: the Midgal type,

f'"+"(v) =AM(f'"')(v), &M(f)(v) = [J f(vv) ')f(vt)dvt/J f(vl)'dvt]', (3)

and the Kadanoff type,

f "+' =RK(f" )(v), Ay(f)(v) =J [f(vvt ')f(vl)] dvl/J~ [f(vt) ] dvl.

More generally, f( ~ can be chosen from .2 = [f): (i)

1=f(1)~ f(v) =f(v ') ~0, f(uv) = f (vu)(i. e., class functions).

(4)

(5)

(ii) Let a(z) =exp(ig &z;X, ), 7 (~) =exp(igjt, co X~), where [X,, X~) are N XN Hermitian traceless [for
G =SU(N)] matrices normalized so that

~ )A. , (( = (~A., ~I=1. Then there exists a strictly positive constant i such
that f (a-(z )vi (cu ) v) is analytic in D, = [(z;, co ) 6 C'+ ',

~
Imz, ), ( 1m', [

~ i), and satisfies a bound

If I
~ f(a-(Rez) v~(Recu) v) exp [—,

' PC(N) [X(Imz;) 2+ X(Imago, ) z]) (6)

uniformly in v, v C G, in the region Dt, where C(N) = C(N;s, t;I) is a positive constant. (iii) f(v) is of positive
type (the coefficient of the character expansion are positive).

Obviously f o~(v) = exp[IBRe Tr(v —1)] belongs to F . In fact, the properties (i) and (iii) are easy to see, and
as for (ii), note that

f 0~ = exp IP/2Tr[a. (z)v~(co) v+ v"r(co)'v"a-(z)" —2]), (7)
and expand a-(z) = exp(iA —8) with A = g(Rez;)A. , and 8 = g(lmz;)k, [respectively, ~(cu) = exp(iA —8) with
A = g(Redo, ) A. and 8 = g(Immi) Xi] around 8 = 0 (respectively, 8 =0). Terms containing odd 8's and 8's are
purely imaginary and they do not appear in inequality (6). Choose I so small that the higher-order terms are negli-
gible.

Note that 8 (~ ) c M. In fact, the properties (i) and (iii) are obviously kept. 4 'o So I now discuss (ii). For sim-
plicity I restrict myself to the recursion formula (3) of Migdal type in this Letter. Assume that f "~ (a(z) vr (cu.)v)
is analytic in D2„, and satisfies the bound (6) in this region. With use of the invariance of dvt and the property (i)
of M, I have

rf("+"( (.)"( ).-) =W-'[„ f("'( (-,'.)-(—,
' ). )f("'( ( —,'.),.(-,' ).-)d. , ]',

W = [„If'"'(, )'d. , 1'. (8b)

This identity means that f (a. (z)vr(co)v) is analytic in D2„+It and satisfies the same bound (6) in this larger
region. Note that (f" (v)) depend only on spec(v) since [f "

) are class functions.
Theorem 1.—(1) Let spec(v) = Iexpi0~, . . . , expi0~ t, exp —if' '0;). Then for all n ~ 0,

N —1

f("~(v) ~ exp —(PN/2) X [0;]2~, (9)
1

where [H]2 =0 mod2vr, ~[H]2 ~

~ 7r. (2) Let z;=$; E Rand cu~ =Oi E R for alii and j The.n for all n ~ no,

g I p I + I q I

(pl q I) f(" (avri) ~constx [pC(N)](lpl+Iql)/2
(1(f)P ()gq

(10)

uniformly in v, v, @, and 0, where p = (pt, p2, . . . , p, ) and ~p ~

= gp;, etc.
Proof: (1) Set a. =1 and define r(cu) =diag(exp(ical), . . . , exp(icotq I), exp( —i$t( 'cu;)), with ~1m';~ ~ e.

In this case C(N) —N[1+0(e )] in the bound (6) and this is inherited by all f . Assume ~H;~ ~m. , and define
an analytic function of one complex variable ( by

t
N —1

g(j) =f" (~((0) exp (PN/2)(1+E) g 0.
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in the region A, = [( & C; /Re( /
«1, /Im(i «e/7T). So g(0) = 1 and

ig(() i «g(Re()exp[ —(PN/2) [e —O(e )](XH, )(Im() ].

(»b)
Define

The maximal principle of analytic function means that g(1) =g( —1))g(0) =1. Let e 0. (2) Choose np so
large that 2 'l ~ [C(N)p] 'i2. By the Cauchy integral formula, represent the left-hand side (LHS) of inequality
(10) in terms of contour integrals along the contours iz; i

= ice, i
= [ C (N) p] 'i2 after setting f ")

=f n)(o. (@ +z) VT(0 +co)v). So the bounds (5) and (6) complete the proof. " 7 Q.E.D.
Now setting T(0) = diag(exp(i 0 ), 1, . . . , 1, exp( —i 8)] E SU(N), I consider

f "+')( ( ))=W '[J f )( ( —, ) ')f )( ( —, ))d (1 la)

W+ [ 't f "'(v)) dv ]

P(n)(a) 2a 2ln f (vT(ia))
f(")( )

(12)

which is real analytic in a (ia i
«e) and v E- SU(N) for all n ~ np, and is even in a. The small positive constant e

does not depend on n (~ np). These facts are easily proved by expanding f ")(VT(ia)) around a =0 and using
Theorem 1. Note that

P(n) =P(n)(Q) = —(()2/(1&2)]nf(n) (vT (())) ip

and thus it is easily seen that

ip„")(a)—p„" i
«constx a,

ip " —p ",
i
«constx

i /v —v'f
i

(14a)

(14b)

uniformly in n ~ n p, v, v' C SU(N), and a E [ —e, e]. Setting co =ia, I take the absolute values of both sides of Eq.
(lla), and use Eq. (12) and inequality (14a):

f(n+ 1)(v) [1+—,
' a2P(n+t) + O(a ) ]

«(~) [J f(" (VV ')f(" (v ) [1+ i a [p " —6 (v v)]+. O(a )]dvt] (15)

where

P(n) Sup P(n) Z (v .v) P(n) & (P(n) +P(n)) ~ Q
Vi lJ

Choosing v & G such that p "+')= p„" '), I calculate 0«[RHS of inequality (15)—LHS of inequality (15)]/az
and let a 0. Thus I have

P(n+ ) ) «P(n) ~J g (v .v) dv P(n) ~Jr [P(n) P(n) ]dv

i uniformly in n ()np(p)) and v E G, with a positive
constant L. Here 2" is the size of area of the nth block
plaquette A and one may regard BA as a Wilson loop.
One can easily estimate the coefficients of the charac-
ter expansion of f(")(v), with the help of inequality
(17).

Theorem 2.—(1)
limf ")=1 (18)

where p(") ~ p, & 0. Inequality (14b) then implies
that p "+' «p(" —K (~ & 0) uniformly in n, a con-
tradiction. Then P(") 0. Choosing np= np(P) large,
I can now assume that (0 «) 1 f (v)—(no)

«exp( —L), L » 1. By applying an asymptotic es-
timate to Eq. (3), it is found4 'p that

0«1 f ")(v) «exp( —L2 —') (17)

p(n+ t) «p(n) ff (Vvt )f (Vt)kn(V)~V) dvt
16

ff("'(vvt )f " (v)) dvt

which means that p "+' «p ". Assume that limp(") =p, & 0. f ")(v (0T)) is periodic in H. Then if f n)~1,
there exist v„and v„such that p„" & 0 and p( ) ( 0. By Theorem 1-(l), there exists a strictly positive K uniform-

"n
ly in n such that
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(2) The string tension is strictly positive.
This method is extended to G = U ( N) and to the re-

cursion formulas of Kadanoff type. A disappointing
aspect of these approximate formulas is that the lattice
(QED)4 [G=U(1)] confines fermions within these
formalisms, as was already discussed in another place.
I feel that the present method of analysis can be ap-
plied to the real systems by knowing what is lost by
these approximations. I hope that I can report on this
problem in the near future (Ref. 8; see also Tom-
boul ls ) .
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