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We study an extension of Levy flight to include self-repulsion in the path of the walk. We call
the extension node-avoiding Levy flight and we show its equivalence to the n 0 limit of a statisti-
cal mechanical model for a magnetic system with long-range interactions between the spins. By use
of this equivalence we are able to make a detailed comparison between the results of the e expan-
sion for the magnetic model, a Monte Carlo simulation of the Levy flight model, and the results of
a Flory-type argument. This is the first comparison of the e expansion for e « 1 with a numerical
simulation for any model. Some speculations are made on applications of the model of node-
avoiding Levy flight.
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Levy flight is a random walk in which'2 the step
length l is a random variable with (continuous) proba-
bility distribution proportional to I/I'+~ (independent
of spatial dimensionality d). In the interesting case in
which 0 & p, & 2 the properties of such a random walk
are strikingly different from those of ordinary random
walks. For example, the Hausdorff-Besicovitch
dimension of the "trail" consisting of the end points
of the steps is p, in the limit of a large number of steps
(whereas it is 2 for ordinary random walks). Thus if
one associates a mass with the end points of the steps,
one has a mass distribution with dimension less than 2.
It was this feature which motivated the introduction of
the model, ' which was originally intended to illus-
trate how a fractal mass distribution could account for
clustering of matter in the universe.

In the present paper we consider a self-avoiding ex-
tension of the Levy flight model. While we will sug-
gest some possible experimental realizations of such
models below, our emphasis here is on the use of one
such model of self-avoiding Levy flight to study the
convergence of the e expansion for ~ && 1 numerically
for the first time.

We will consider random walks on a lattice which
will be taken to be hypercubic for definiteness. We
will use the same algorithm for generation of the walks
which is used to define Levy flight on a lattice4' ex-
cept for the self-avoiding feature: At each step, a
direction for the next step is chosen at random and a
step length I is chosen so that the ensemble of step
lengths will approach the distribution

If the algorithm allows the resulting step, whether
that step intersects some part of the path or not, then
one has Levy flight on a lattice as discussed in Refs. 5
and 6. As shown there, this Levy flight has fractal
dimension

D = p, = lna /Inb

if p, & 2. Several self-avoiding constraints might be
considered. Here we will study node-avoiding Levy
flight defined so that the step selected as described
above is rejected if the position at the end of any pro-
posed step intersects the position of the end of the pre-
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vious step in the walk. The meaning of this constraint
is illustrated in Fig. 1, where a disallowed step on a
square lattice is shown. In each case, if a step is disal-
lowed, the entire walk is discarded from the statistical
sample, so that the resulting ensemble of walks
weights the number of possible Levy flights subject to
the constraint only with the product of step-length dis-
tribution factors for each step taken from Eq. (1)
above. Thus we are considering "equilibrium" en-
sembles in the sense that the self-avoiding walk
describes an equilibrium ensemble while the "true"
self-avoiding walk does not. 7 "Kinetic" versions of
these models, analogous to the true self-avoiding walk,
can be defined but we will not consider them here.

We can establish an equivalent magnetic model for
node-avoiding Levy flight: In qualitative field theoret-
ic terms it is clear that the essential critical features of
the problem will be reproduced by a model in which
the propagator corresponding to the Gaussian model in
magnetic systems is of the form (q&+r) ' rather
than (q2+r) ' as it is for systems with short-range
interactions. Here r ~ T —T„where T and T, are
respectively the temperature and critical temperature
of the magnetic model. (One way to see this is to note
that it is shown in Ref. 4 that the diffusion operator
Dq' becomes Dq& for Levy flight. ) If, in a lattice
model, we randomize among orthogonal directions on
the lattice at each step, then it is not hard to show that
if the diffusive propagator is to have the required form
in momentum space, then the step-length distribution
must be as in Eq. (1).

With this formulation, the development of a mag-
netic model yielding the statistics of node-avoiding
Levy flight proceeds as follows: Consider the model
described by

—/3H = XKJS; Si. (2)

dinate axis. As in the Sarma derivation of the
equivalence of the nearest-neighbor n-vector model to
a self-avoiding walk in the limit n 0, we consider
the high-temperature expansion of the partition func-
tion for this model in the n 0 limit. As in Refs. 8
and 9,

Z = II,.J dQ;[exp( —PH)]/Q~

is 1 in the n 0 limit, and defining

(. . .) = II, dQ, [exp( —PH)(. . .)]/Q

(. . .) o
——II,.„dQ, (. . .)/Q~,

one has

(S S ) = XK~Y)~(r;, ),
N

in which

Here the sum is over all combinations of step lengths
given by (rI I. The factors pt ——r, tt+I") provide the
correct weighting for node-avoiding Levy flight as ex-
plained above. q~(r~, {rI }) is the number of node-
avoiding walks between r; and r~ with N steps of
lengths given by (r& }. This relation establishes that
the statistics of node-avoiding Levy flight can be ob-
tained from the statistical mechanical model described
by Eq. (2) in exactly the same way that similar
equivalences are established for the self-avoiding and
biased walk problems. s '0

The a expansion for the model described in Eq. (2)

Here P is the reciprocal of the temperature, H is the
Hamiltonian, and the S's are n-component vector spins
of length Jn on the lattice sites. K& is zero unless i
and j lie along one of the d orthogonal directions in the
lattice and is K/rjt+&, where rj = {r;—r~ ~

is the dis-
tance between sites i and j, when they lie along a coor-

CLF

SAW

(a)
(b)

0

FIG. 1. Illustration of the constraint which defines node-
avoiding Levy flight. Node-avoiding flight excludes paths of
the type illustrated in (a) but not those shown in (b).

FIG. 2. d-p, diagram showing regions in which classical
Levy flight (CLF), random walk (RW), node-avoiding Levy
flight (NALF), and self-avoiding walk (SAW) behavior is
expected.
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has been studied by Fisher, Ma, and Nickel" and by
Sak. ' ' A diagram showing the predicted behavior
for various d and p, is given in Fig. 2. (Here we show
only those aspects of the results of these references
which can be expected to hold in the limit that the
number n of spin components goes to zero. ) We note
four regions in the diagram corresponding to different
critical behavior (associated with the asymptotic
behavior of the walk in the limit of a large number of
steps). The four regions are as follows.

Classical Levy flight (CLF). In t—his region (p, & 2
and d & 2p, ) the self-avoiding constraint is predicted
not to affect the results of Hughes, Schlesinger, and
Montro114 ~ for the lattice version of the Levy flight
model. The diffusive propagator for this model takes
the form (q&+ r ) ' for the equivalent magnetic
model consistent with Eq. (32) of Ref. 5. This form of
the propagator is also consistent with the value
g=2 —p, reported in Eq. (3) of Ref. 12 for the mag-
netic model. The value y = 1 [Ref. 12, Eq. (3)] im-
plies that the number of classical Levy flights of N
steps approaches a constant to the power N as N be-
comes large. One must interpret the value v = I/p,
found' for this region with some care: The pair-
correlation function for the magnetic model falls off
algebraically (for all temperatures) consistent with the
result (R2) ~ reported in Refs. 4 and 5. The ex-
ponent v determines the singularity in g, the correla-
tion length scale needed to scale the correlation func-
tion which itself decays algebraically.

Random walk (R W).—Here (p, & 2 and d & 4) one
expects ordinary random walk behavior with v = —,

' and
y=1.

Self 'avoiding ran-dom walk (SA W).—In this region
(p, & 2 —qs„w and d & 4) the exponents should be
those of the ordinary self-avoiding walk. Thus the
coherence length exponent will be very near the Flory
value. For d =2, the n =0 values of the exponents
are accurately known. '~'

Node avoiding Levy fli-ght (NALF). —In the region
d/2 & p, & 2 —qsAw one expects the "long-range" ex-
ponents found in Ref. 11. In particular,

t

1 2p, —d 40 2p, —d 3 —p,1— p, +.
v 4iM, 512 p, 4

The main interest here is in the e expansion for the
exponents in the NALF region, as displayed in Eq.
(3). The e expansion gives the critical exponents as a
series in e = 2p, —d as one moves into the NALF re-
gion from the NALF-CLF boundary at d =2p, . It is
the fact that the parameter p, is at our disposal in a
simulation which provides the unique opportunity to
use this model to compare the e expansion for this
model with Monte Carlo simulations with e « 1. (It

I.6—

I.4—
d=2

I.2—

0.8—

0.6
0

FIG. 3. Correlation length exponent p vs p, for d =2.
The solid line for p, ( 1 is the classical Levy flight prediction
v=1/p, . The horizontal line for p, & 2 —7is„w=1.8 is the
Flory exponent (=0.75). The dashed line is the e-
expansion prediction to order e. The dash-dotted line is the
reciprocal of the first two terms of Eq. (3), while the dotted
line is the expansion of the reciprocal of the first two terms
of Eq. (3) to order e'. The triangles with error bars are our
Monte Carlo results.

should be noted that the determination of the critical
exponent v from a Monte Carlo simulation of the walk
is not entirely straightforward here because (R 2)

diverges for these walks. We will provide details of
our techniques elsewhere. ) In Fig. 3 we show results
for the exponent v from Monte Carlo simulations of
node-avoiding Levy flight on the square lattice (d = 2)
where they are compared with the known results for
p, & 1 and p, ) 2 —qsAw and with first- and second-
order expansions in e = 2p, —d [Eq. (3)] in the region
1 & p, & 2 —p, sA~. In second order in e we show both
the reciprocal of the first two terms in Eq. (3) and also
the reciprocal of Eq. (3) expanded to second order in e
in Fig. 3. We have also compared our Monte Carlo,
results with the "Aa- expansion" of Ref. 11 and find
that it agrees less well with the Monte Carlo results
than the e expansion results shown. The Monte Carlo
calculations are for a minimum of 1000 walks of 50
steps for a given value of p, and, in most cases, much
more (e.g. , 13000 walks for p, = 1). The error bars are
somewhat subjective because the occasional large steps
make the run-to-run fluctuations rather large and
unpredictable. They represent a conservative estimate
of the errors if they are Gaussian distributed but do
not take account of any possible systematic errors. We
note that both the first-order e expansion and the
second-order expansion of the reciprocal of Eq. (3)
agree with our simulation to within the estimated error
bars over the whole range from p, = 1 to p, = 2 —qsAw.
On the other hand, if the reciprocal of Eq. (3) is used
without expansion, then the second-order results ap-
pear to disagree with the simulations. Over most of
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the range of p, in both expansions, using only the
first-order term in e appears to give closer agreement
with the simulations than does the second-order ex-
pansion. At the point p, =2 —qsA~ we find, using'
2 —qsA~, that v=0.681 to first order in e, and that to
second order in e the reciprocal of Eq. (3) gives
v = 0.784 so that at this point the second-order result is
better than the first-order one if we expand the re-
ciprocal of Eq. (3).

One can also produce an argument line that of Flo-
ry for the exponent v in this type of random walk:
Using an argument closely similar to that described in
Ref. 9 for d ( 2p, gives R ~ N3itd+t', where 8 is the
radius of gyration of the coil so that v=3/(d+iu, ),
while v = I/p, for 1 & 2iu, . These "Flory" values are in
worse agreement with our Monte Carlo results than
the e-expansion values.

Finally, we offer a few speculative remarks on possi-
ble physical realizations of node-avoiding Levy flight.
One can imagine an "organism" which moves in a
space of dimension d in which a fractal of dimension D
is embedded. Initially, the mass of the fracta1 is to be
regarded as "nutrient" for the organism. The organ-
ism moves in straight lines until it encounters part of
the fractal. If that part of the fractal still contains nu-
trient, the organism consumes it and then starts to
move in a straight line in another randomly selected
direction. If the nutrient on the part of the fractal
which the organism encounters is already consumed,
then the organism dies. It then follows, if D+1 ( d,
that the surviving organisms perform Levy flight with
p, =d —D —1. Similar scenarios might occur in the
transport of chemically reactive species in a medium in
which the reactant is thinly dispersed with dimension
D.
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