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We study a class of simple, translationally invariant, two-dimensional, nearest-neighbor, isotropic
XYmodels which possess, in addition to the familiar integer vortices, half-integer and "string" ex-
citations. The half-integer vortices interact through both the logarithmic Coulomb potential and a
linear potential mediated by the strings. The phase diagram of these models consists of three
phases separated by lines of conventional Kosterlitz-Thouless transitions and lines of Ising transi-
tions driven by the vanishing of the tension in the strings.

PACS numbers: 75.10.Hk, 61.30.—v, 75.40.Dy

In this Letter, we show that by modification of the
cosine potential of the standard isotropic two-
dimensional (2D) XYmodel one obtains an XY model
which, in addition to the Kosterlitz-Thouless (KT) in-
teger vortices, exhibits extra topological excitations-
half-integer vortices and "strings. " The strings con-
nect half-integer vortices and possess a "tension, " i.e. ,
mediate an effective interaction between half-integer
vortices proportional to the distance between them.
At the lowest temperatures this interaction binds the
half-integer vortices together in pairs of integer vorti-
city; the low-temperature phase is therefore just that
of the conventional XY model. ' For appropriate
parameter choices, however, the string tension can
vanish as the temperature increases, which produces
an Ising transition into a phase in which spins can flip
by 180' with relative ease, but still exhibit a nonzero
spin-wave stiffness at long wavelengths. A KT un-
binding of the half integer vortices restores the
paramagnetic phase at a still higher temperature. In
this case, therefore, the model has three phases. For
other choices of parameters, the string tension remains
finite at the half-integer KT temperature and therefore
"confines" the half-integer vortices, preventing their
dissociation. In this case, a single integer KT unbind-
ing at a higher temperature restores the paramagnetic
phase directly, and one obtains only the usual two
phases. '

To illustrate this physics on a heuristic level, consid-
er the following isotropic LYHamiltonian:

~= —X [Jcos(25, ,)+icos(50, ,)].
( «)

Here r labels the sites of a square lattice, ( rr')
represents nearest-neighbor pairs, 0~0„~27ris the
angle that the spin at site r makes with some fixed
axis, and 50,=—0, —0,. For 5 ~ 4J the above poten-
tial has a metastable minimum at 50 = m, which lies 2A
in energy above the absolute minimum at 50=0.
Ising-type excitations of the perfectly ordered fer-
romagnetic ground state consisting of groups of spins
overturned by 180' are then metastable. There are, in
addition, excitations not present in Ising models,

namely, one-dimensional strings of antiparallel spins
that terminate in half-integer vortices and antivortices
(Fig. 1). Such string excitations cost an energy equal
to 2A times their length. That is, near T=O the
strings have a tension equal to 2A. The total energy
cost of a half-integer vortex-antivortex pair separated
by R is thus the sum of the usual Coulombic term, '
roughly equal to (2m. /4) (6 + 4J) lnR, and a term
roughly equal to 2b, R resulting from the string joining
the vortices. (There is, of course, also an R-
independent core energy of the vortices. ) At low T
there is insufficient thermal energy to create long
strings, and so the half-integer vortices are bound to-
gether tightly in pairs. The many possible ways of con-
necting two half-integer vortices with a string give rise
to a string "configurational" entropy proportional to
R. Crudely speaking, then, the string tension de-
creases like 2b, —n kB T [n = 0 (1)] with increasing T,
vanishing at some critical temperature ka T, ,

= O(A).
The phase diagram is determined by the relative

magnitudes of T, , and the two other relevant tempera-
tures in the problem, T,, and T... the half-integer and

integer vortex-unbinding temperatures, respectively.
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FIG. 1. A half-integer vortex-antivortex pair connected

by a string. The centers of the half-integer vortices are
represented by the circles around the plus and minus signs,
and the string is represented by the dashed line.
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Standard estimates' which ignore the strings give
ks T,,= ,' 7—r(6 + 4J) and ka T,, = —,

'
m (b, + 4J). The

crucial point is that T, can be varied independently of
T, and T, . By adjusting the ratio b,/J one can pro-

duce three possible scenarios.
(a) T, & T,, & T,, For T & T,, one obtains the

familar low-T phase of the XY model. At T= T, , a

phase transition, characterized by the vanishing of the
string tension and hence of the free-energy cost to pro-
duce Ising excitations (i.e., spin flips) of infinite
wavelength, occurs. The transition therefore belongs,
whenever it is continuous, to the universality class of
the Ising model. The spin-correlation function
gt(r —r') —= (exp[i(e„—e„')]),which decays algebrai-
cally below T, , decays exponentially, with the

Ising correlation length, above T, . Since for T,Ci' Ci

& T & T,, all half-integer and integer vortices remain

bound in pairs, spin flips are the only excitations that
disorder the system. Thus the algebraic decay of the
correlation function g2(r —r') = (exp[2i(e, —e„')l),
which also measures orientational correlations but
does not distinguish between the "head" and "tail" of
a spin, persists in this temperature interval. At higher
temperature, T... the system undergoes a KT transi-

tion wherein the half-integer vortices unbind, which
produces the paramagnetic state characterized by ex-
ponential decays of both gt(r —r') and g2(r —r').
Thus in this case there are three distinct phases.

(b) T,, & T,, & T,, The half-integer —vortex pairs

cannot unbind at T, , but are confined in pairs by the

positive string tension. Instead, at T,, the integer-

vortex pairs, which are not bound by strings, dissoci-
ate, producing exponential decay in both gt(r —r')
and g2 ( r —r') simultaneously.

(c) T, & T, & T,, Again, at T,, the strings confine
the half-integer vortices. As T approaches T, , from
below, the half-integer vortex pairs become more and

(0, co) (oo,co)

(O, O)

K-1
(m, 0)

FIG. 2. Schematic phase diagram of the model defined by
Eq. (2). In this diagram AQ, BQ, and CQ represent integer
KT-type, Ising-type, and half-integer KT-type transitions,
respectively.

more loosely bound; eventually, at some critical tern-
perature, T„bounded above by T, , they screen the

integer-vortex interactions sufficiently to induce an
unbinding of the integer vortices, thereby restoring the
paramagnetic phase. Just as for uniformly frustrated
LY models, 3 it is not known whether the integer-
vortex unbinding preempts or occurs simultaneously
with the Ising transiton. In the latter case, the critical
point presumably belongs in a new universality class
which combines the logarithmic specific-heat singulari-
ty of the Ising model with the features of the KT tran-
sition. These features are illustrated in the schematic
phase diagram of Fig. 2. Scenario (a) corresponds to
moving along a curve which cuts through phases n, P,
and ~ as T changes Scena. rios (b) and (c) correspond
to a curve which cuts through a and H only.

Much of this physics can be obtained analytically
from the following modified Villain-model version of
(1). The partition function of this model is

Z= X j (exp[ — It. (e„—e, 2~—m, )—]+exp[ —r ——,e(e„—e, —~ —2~m, )2]).der 1 2 1

(m,} r (rr')

Here the (m, ,) are summed over all integer values; K and I are rough analogs of (4J+ 5)/ Tand 6/ T, respective-

ly, in (1). [The usual Villain model is given by (2) with I = ~.] Performing standard duality transformations5 on
(2), one obtains

d+gZ= g J(j~ JI exp ——g (+~ —W, ) +t2nK+mtt+tt J J (1+exp[ —I' —iver&(+tt —+„)])(3)
(m~} R (gg')

Here 8 runs over the N sites of the dual lattice (which consists of sites situated at the centers of all elementary
squares), and 'Ij'z and m„are the familiar spin-wave amplitude and plaquette vorticity, respectively. If one ex-
pands the product

J (1+exp( —[r+i~a(e„—e„,)]))
(zz')
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in (3), there are 22~ terms. It is simplest to represent each term of this expansion as a "bond graph, " i.e. , as a
square array of lattice sites wherein some nearest-neighbor pairs are connected by a bond and the rest are not. In
the bond graph representing any particular term of the expansion, a given pair (RR ) is connected if and only if,
in the construction of the term, one has used the second summand in the curly brackets for that pair. Because
each bond introduces a phase factor exp[ —i7rK(+z —+,) ], the vorticity of any site R connected to an odd

number of bonds is shifted by —,', i.e. , rather than being an integer m~, it is of the form m~ + —,
' . Any such site is

occupied, in other words, by a half-integer vortex. Moreover, each half-integer vortex is connected to at least one
other by a continuous chain of bonds: These are the strings.

Integrating out 'Il~ reduces (3) to Z = Z,„Z„where
r

d%g K z 1
Z,„=jJ exp ——(W~ —W„,), Z, = x, 'C2„(R&,R2, .. .,R2„)Z2„(R,,R2, . . . , R2„).—oo

Here Z,
„

is the spin-wave partition function, glz» denotes a sum over distinct (R;), i.e., those satisfying

R,aR2e. . .eR2„,and Z2„(R&,R2, . . . , R2„)is the usual Coulomb gas-partition function for a system with
half-integer vortices situated at (Rt,R2, . . . , R2„):

I 2N

Z2„({R))=g'exp mK X (m„+v„)ln (m~, +v~, )+(Inyo)x(m~+v„)', v~ ————,
' X 5~„,. (5)

(m~) RwR' a R i=1

Here the symbol g(» in (5) means a sum over all (m~) satisfying g~(mn+v~) =0. yo= exp( —~~K/2) is the
unrenormalized vortex fugacity. The quantity C2„(Rt,R2, . . . , R2„) is calculated according to the following
graphical rules: Associate a Boltzman factor e r with every bond; sum over all bond graphs in which every
R C (R t, R2, . . . , R2„)is connected to an odd number of bonds, while all other dual-lattice sites are connected to
even numbers of bonds. It is straightforward to prove that precisely these graphical rules are used in the hyperbol-
ic tangent expansion to compute the Ising 2n-point correlation function for the nearest-neighbor reduced Ising
Hamiltonian A ~= —Ktg&~„&a~on,, where tanh(K&) —= e . That is, C2„({R;)) = A 'Ztg, ((R;) ), where
A=2 cosh (Kt), and Zt and g&(R&,R2, . . . , R2„)are, respectively, the Ising partition function and 2n-point
correlation function computed with A ~. Thus

Z, = —Zt X, 'g)((R;))exp 7rK X (m~+vz)ln (m~, +vn, )+Inyox(mn+vz)1 1 R —R'
2

A „On!(R RwR R
(6)

Equation (6) is the partition function for a system con-
sisting of two kinds of vortices. The integer vortices
interact through the usual Coulomb interaction; the
half-integer vortices interact through both the
Coulomb interaction and the potential V, (R —R ')
= —lng&(R —R'), mediated by the string. Now let us
examine the string potential in more detail. If I » 1

(i.e. , K&= 0), the associated Ising model is above its
critical temperature. Its two-point correlation function
gt(R —R') therefore behaves like exp( —~R —R'~/g~)
for ~R —R'~ && g~. The string potential V, (R —R') is
thus given by g~ '~R —R'~, whereupon the string ten-
sion is just the inverse Ising correlation length, I/(&,
and half-integer vortices are bound in pairs of integer
vorticity and of typical linear size (~. On the other
hand, if I =0 (i.e. , K, » 1), g, (R —R') Mo, the
square of the Ising magnetizaton, and the string ten-
sion vanishes. Clearly the critical value I, (i.e. , the
temperature T, ) where the string tension first van-

C)

ishes is determined by exp( —I, ) = tanh(K& ' ),
where K~ ' is the critical coupling of the Ising Hamil-
tonian M&. If the string tension vanishes before any

vortex unbinding occurs [scenario (a)] our model thus
undergoes a transition in the Ising universality class.

To construct the phase diagram of (2) in (K, I )
space, we first consider some limiting cases. When
I = ~, (2) reduces to the usual Villain model and
therefore possesses an integer KT transition (A in
Fig. 2). When I =0, a change of variables from 0„to
@,—= 20, transforms (2) into the partition function of
the Villain model. However, because an integer vor-
tex in the @ field is a half-integer vortex in the 0 field,
the phase transition (C in Fig. 2) corresponds to the
unbinding of half-integer vortices. When K = ~, the
deviation in angle between nearest-neighbor spins is
restricted to be 0 or m. , with respective Boltzmann
weights 1 and e ". In this limit (2) reduces to a
nearest-neighbor Ising partition function with reduced
exchange constant K&' =I /2. Note that in (6), which
is the dual of (2), only the n =0 term contributes at
K=~, so that Z, —Z&. K~' and K& satisfy the duality
relation tanhK& = exp( —2K&' ).

Now let us consider small deviations from the limit-
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ing cases. When I )) 1, the Ising correlation length is (t ——0, so that only half-integer vortex pairs of small spa-
tial extent ( —gt) occur. Since such tightly bound pairs do not influence the long-wavelength properties of the
system, the phase transition remains integer-KT type in the neighborhood of A. [This is readily verified by a gen-
eralization to (6) of the Kosterlitz renormalization-group calculation. ] In the limit 1 « K & ~, the vortex fluc-
tuations produce small perturbations in the Ising partition function Zt. Expanding (6) as a series in yo, we obtain,
to lowest order,

2
—~~/4

1 Xo A —A'
Z = —Xexp Kt X a.~o-~, +

{-R) (RR ) R R
PRO Rr (7)

Equation (7) is the partition function of an Ising
model with algebraically decaying interactions. For
sufficiently rapid decay, however, viz. , for mK/4 ~ 4,
such interactions are irrelevant to the critical behavior
of the nearest-neighbor Ising model. 7 Thus the phase
transition in the neighborhood of 8 remains in the
universality class of the ordinary Ising model. Finally,
when I' = 0, g&(R t,R2, . . . , R2„)= Mo ". Substitut-
ing this into (6) one can show that the main effect of
the strings is to multiply the fugacity of the half-
integer vortices by Mo. Since this trivial renormaliza-
tion does not affect critical behavior, the half-integer
KT transition persists in the neighborhood of C.

We have calculated the slopes of the phase boun-
daries at A, 8, and C perturbatively. Combining these
results with the earlier heuristic arguments, we arrive
at the schematic phase diagram shown in Fig. 2. The
three distinct phases in this figure are distinguished by
the behavior of gt(r —r') and gz(r —r') In the .phase
labeled n, both gt(r —r') and g2(r —r') decay alge-
braically. In the phase labeled P, gz(r —r') decays
algebraically and gt (r —r') decays exponentially. In
the paramagnetic phase I', both gt(r —r') and
g2(r —r') decay exponentially. Note that the nature
of the phase diagram in the vicinity of the multicritical
point, Q, in Fig. 2, is as yet unclear. In particular, the
shapes of the phase boundaries near Q are unknown.
Indeed, it is entirely possible that, e.g. , the AQ boun-
dary becomes a first-order line near Q. Similar uncer-
tainties apply to BQ and CQ.

A physical realization of (1) or (2) is the isotropic-
to-nematic phase transition in two-dimensional liquid-
crystal systems in which the constituent long
molecules have slightly different functional groups on
the "head" and "tail" ends, and in which the interac-
tions tend to align the heads of the molecules. For ap-
propriate choices of 3,/I (or I /K) the system will first
condense, as the temperature is lowered, into the ordi-
nary nematic phase wherein the molecular axes align
to produce quasi long-range orientational order, while
the heads and tails of the molecules fluctuate random-
ly. Upon further cooling there will be a second Ising
transition at which the heads and tails also align to es-
tablish quasi long-range order. In practice, other
liquid-crystal transitions (e.g. , the crystallization tran-
sition) may intervene before the Ising transition. The

question of the existence of materials that do exhibit
the two transitions is an interesting one.

The modified Villain model (2) is representative of
the class of XY models characterized by nearest-
neighbor interactions Lr(50) with two local minima in
the range 0~ 50 ~ 2n One .could imagine a generali-
zation to models whose nearest-neighbor potentials
possess q local minima. The phase diagrams of these
models probably consist of lines of KT transitions and
transitions of a q-state model. 2

The phenomena reported here are not unique to the
2D XYmodel. Any system with continuous symmetry
and a potential with more than one minimum can, for
appropriate parameters, acquire its fully ordered state
via two successive transitions, one of which is Ising
type. In particular, classes of three-dimensional XY
and Heisenberg models will exhibit such behavior.
There may be bulk liquid-crystal systems with distin-
guishable heads and tails that have, as in the two-
dimensional case discussed above, two distinct nematic
phases separated by an Ising transition.
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