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We use a spin-coherent representation to derive the spectrum of nonlinear excitations in a spin-5
quantum ferromagnetic Heisenberg chain in the continuum limit. Quantum effects split the semi-
classical spectrum into two branches —a lower branch of spin-wave-like, large-width solitary waves
with negligible quantum corrections for all S, and an upper branch of particlelike, small-width soli-
tary waves subject to significant quantum corrections for low S. The stability of these excitations is
briefly discussed.
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The spin-S, classical, isotropic, ferromagnetic
Heisenberg chain in the continuum limit is a com-
pletely integrable nonlinear system whose spin-
evolution equation has exact soliton solutions. These
are the natural nonlinear excitations of the system.
Bethe obtained the exact multimagnon bound-state
spectrum of the quantum, discrete, spin- —,

' chain, us-

ing an Ansatz for the form of the spin eigenstates.
Semiclassical quantization (e.g. , via path integration)
of a classical soliton yields an energy spectrum (for
general S) formally identical to the continuum limit of
the Bethe-Ansatz spectrum. This suggests that the
semiclassically quantized solitons of the classical field
theory correspond to the bound states of the quantum
problem. This correspondence extends to other quan-
tum systems such as the sine-Gordon and nonlinear
Schrodinger field theories. 4 However, it is not always
physically illuminating to calculate quantum correc-
tions in a path-integral approach, and the validity of
the semiclassical approximation is often questioned, s

especially for small S values. In this Letter we present
an alternative formalism for treating quantum spin
dynamics which also clarifies quantitatively the role of
the quantum effects on soliton motion.

We study soliton dynamics in the isotropic, quantum
Hamiltonian H = —JQ„S„S„+& by analyzing the
spin-operator evolution equation in Radcliffe's spin-
coherent representation. 6 Earlier coherent-state treat-
ments7 9 use a severely truncated Holstein-Primakoff
expansion for S„—+ and further approximate 0 by a
Hamiltonian which is biquadratic in boson operators.
Working in Glauber's coherent state representation
and making a small-amplitude approximation, one
then finds solitary-wave profiles identical to classical
solitons. The total energy and magnetization are
found approximately. However, the total momentum
(which is also a constant of the motion) has not been
considered in this approach, probably because the bo-
son representation does not provide a natural basis for

its construction. Moreover, it is evident that the trun-
cation of the operator expansion and the subsequent
approximations distort the nonlinearity of the system.
In contrast, we work here directly with the spin opera-
tors, make no approximations to H, develop and use
an exact nonlinear equation for the quantum system,
construct the momentum operator P, and finally, also
obtain the energy-momentum relation for the solitons.
The spin-coherent representation thus appears to be
the one best suited for the analysis of quantum effects
on the nonlinear excitations of spin systems —the
method is readily applied to spin symmetries other
than that treated here.

Details of our work will be published elsewhere, but
the principal resuls are as follows: (1) The solutions
of the exact nonlinear equation in the spin-coherent
representation are identical in form to classical soli-
tons, without any small-amplitude approximation. (2)
The Bethe-Ansatz-like semiclassical soliton spectrum
obtains in the small-amplitude regime for all S. (3)
Quantum corrections to the spectrum are negligible
for large-width, small-amplitude spin-wave-like excita-
tions for all S. They are significant for small-width,
large-amplitude, particlelike excitations for small S.
For general S, the spectrum thus has two branches
(representing these two types of excitations), with a
crossover at a certain "critical" width (and energy).
(4) The quantum solitary wave is unstable as a means
of energy transport when its width lies within a range
of values around the critical width, and stable other-
wise. This instability range decreases as S increases.

We work with the direct product states ~p, )= II„~p,„) where the spin-coherent state ~p, „) = (1
+ ~p~[2) sexp(p, „S„)(0), p, „& C, and (0) is defined
by S„'~0) =S~O). The states ~p, „) are normalized,
nonorthogonal, and overcomplete. The diagonal ma-
trix element (p, ~A ~p, ) of an operator A is denoted by
(A ). These elements are known to be good operator
representatives. ' It is convenient to use the parame-
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trization p„= tan( —,'0„)exp(i@„), so that

(S„")= S sin0„cosg„, (S~) = S sing„sin@„,

while

((S„')2)=S(S——,
' ) cos29„+ —,

' S.

The equation of motion is

(S„')= 5cosH„,

irl, S„+= Jh '[(S„' 1+S„'+1)S„+—S„'(S„+1+S„+~1)],
which yields a nonlinear c-number equation for the diagonal matrix elements with the same physica! content. In the
continuum limit, we obtain, after some algebra, the coupled equations

(sin&) 8,@= JiY 'a2[tl~0 —sinH cos8(8„@)2], 'rl, o = —Jtt 'a2[sin8(B @)+ 2 cos8(B„&)(8„@)], (2)

where a denotes the lattice spacing. In terms of the canonical variables' p = cos0 and q = @, Eqs. (2) are identical
to the evolution equations for the classical continuum chain (after a redefinition of the constants). For the boun-
dary conditions cos8 1 as ixi ~, Eqs. (2) have the single-soliton solution given by

sin'( —,'8) = (1 n') sec—h'[(x —vt xo)/I ]-
and

@= $0+cut+/tv(x —ut)/(2 JSa2) + tan '((2JSa2/tvt ) tanh[(x —ut —xo)/I ]), ()
where xo and $0 are constants. The translational velocity of the soliton is v, its intrinsic rotational frequency is cu,
its amplitude is (1 —n ), and its width is (JSa /tee)'/ (1 —a2) ' =I', where n=v/(4Jil 'a Scu)'2, Q»n» l.
We also find

(S'(x, t)) = S(1—2(1 —n2) sech2[(x —ut —xo)/I ]).
The total energy and magnetization corresponding to solution (3) are

(0) 4(JS+ )1/2(1 2)1/2

and

(Sz S) ) 4( JSQ/~)1/2(1 ~2)1/2

Hence

(4)

Defining the classical constants according to Jt J,l, SA S,1 and then passing to the continuum limit, we find
that (5) and (6) are formally identical to the classical expressions. This happens essentially because Eand M (un-
like the momentum P, to be defined below) involve operators that are linear in the spins at any single site.

Our strategy has been to work with the spin-coherent respresentation for the discrete chain, take the diagonal
matrix elements of operators, and then pass to the continuum limit. Thus, in order to find the energy-momentum
relation, we must first construct the momentum operator P in the discrete case. For the classical, continuous
chain, the momentum —the infinitesimal generator of translations —is given by'3

P„=a 'J dx(S,"1B„S&1)/(S„+S;1), (8)

where S,l has the dimensions of angular momentum. To construct the correct quantum analog, we discretize (8),
replace (S'1)„byh S„' (i = xy, z) and S,l by/t (S ) '/ =h [S(S+1)]'/, and finally symmetrize the resulting expres-
sion to ensure that Pis Hermitian. (S„ is dimensionless). Thus

P = (h/2a ) X„{(S„"5~+1—S„"+15~)/[S'/ (S+ 1)'/ + S'] + H.c.) . (9)

To find P (P), we must expand the inverse operator in (9) in powers of S„'. If, in this expansion, we make the
approximation

(S')'= ((S')")= (S')' (r =1,2, . . .)

for all S, we obtain

P = (4St/a ) sin ' (1 —n ) ' (10)
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Combining Eqs. (7) and (10) yields the dispersion relation

E = (16JS lt/~ M)) sin (Pa/4' ) (16J,&S,&/~M ~) sin (Pa/4S, ~),

where ~P~ ~ 2vrS, ~/a. Expression (11) is again just the classical result, obtained because the above mean-field-
like approximation amounts to neglect of quantum fluctuations —a procedure justified only in the small-amplitude
limit. Moreover, we find that the group velocity is

cg(P, M) —= (BE/BP)~= v, (12)

the soliton velocity itself, for all S.
On the other hand, we can in principle calculate (P) exactly for any S. (The calculation becomes increasingly

tedious as S increases. ) For low values of S, we find, for S = —,',
Pa = 243hn(1 —n ) l

for S=1,
Pa = 2h'n(1 —n ) (4.90 —2.66n );

for S= —', ,

Pa =9hn(1 —n2) t 2[0.83+0.32(1 —n2) +0.68(l —n ) +0.88(1 —n ) ].

(13a)

(13b)

(13c)

Figure 1 shows how Pa/2vrSh varies with n. For each
S there is a single maximum in P which shifts as S in-
creases towards the limiting value 2mS, ~/a of the clas-
sical curve. For each value of P, there are two values
of n (in contrast to the classical case), and this implies
two possible soliton widths I . Figure 2 shows the E-P
dispersion relations for S= —,

' and S= —', , obtained
(with M=const) by eliminating n between Eqs. (7)
and (13). (The curve for 5= 1 lies in between these
curves. ) Different scales have been chosen for the
two cases so that the corresponding semiclassical spec-
tra are identical (for ease of comparison). The quan-
tum spectrum consists of two branches, with a cross-
over at a critical energy E, (S). Since E=4JS a/I', we
see that quantum effects dominate for the small-I,
particlelike excitations of the upper branch, and are re-
latively unimportant for the large-I, magnonlike
modes of the lower branch. The latter expands with
increasing S, until it takes over completely in the clas-
sical limit (S ~, it 0). The group velocity cg has

&.0-.

0
54—

pa jh (s = &/2)
2 3

I I
——2.0

S=&

opposite signs for the two branches with ~cz~ ~, as
E E,(S). This might appear to be unphysical, but a
heuristic argument" shows that for

~ cz ~

~ v
= (4Jlt tScoa2) ' 2, the excitations become unsta-
ble —essentially because energy transport cannot be
physically associated with solitons in this regime. For
S= —, , this implies instability for Pa/t & 0.7. If this
argument is taken seriously, there is an intermediate
range of energies (and widths) for which the solitons
are unstable; for low spin values, stable quantum soli-
tons exist only for small P. As S increases, the range
of instability narrows. Quantum fluctuations thus
strongly affect the stability of the solitons: Ignoring
such effects (the semiclassical approximation) yielded
cg = v [Eq. (12)], suggesting stable solitary waves for
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FIG. l. The (scaled) momentum P/(27r S ) (units of
ta ') vs n.

FIG. 2. Soliton energy E (units of Jt ~M~ ') vs momen-
tum P (units of)ra-').

539



VOLUME 55, NUMBER 5 PHYSICAL REVIEW LETTERS 29 JULY 1985

all I'. (Their stability can be established independently
in this case. ) A rigorous stability analysis of the quan-
tum case presents a complicated numerical problem
which we have not yet solved.

In the presence of an external magnetic field in the z
direction, the parameter «o in the soliton solution be-
comes «o+«oo where «oo is proportional to the field. It
would be interesting to investigate experimentally the
existence and stability of the nonlinear excitations
predicted here, using «0o as a control parameter for the
soliton width, amplitude, and energy.
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