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Local power Conservation for Linear Wave propagation 1n an Inhomogeneous plasma
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An expression for local power absorption for linear wave propagation in a nonuniform hot mag-
netoplasma is derived from fundamental principles. The power-absorption definition is used to ob-
tain a local power-conservation relation for a one-dimensional configuration. The formalism is ap-
plied to wave propagation in the ion cyclotron range of frequencies where strong damping and
mode-conversion processes are present.
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In this Letter we present a definition of local power
absorption for linear wave propagation in a spatially
dispersive, collisionless, magnetized plasma. The def-
inition is generally valid within the context of a linear
wave analysis and provides an extension beyond the
limitations of weak damping or single-mode treat-
ments. In the limit of weak damping, power-
conservation theorems have been developed for a sin-
gle wave propagating in a uniform plasma and used to
treat weakly nonuniform plasmas. '2 More recently,
conservation relations have been presented in conjunc-
tion with differential equations which model wave pro-
pagation and mode conversion near the second ion-
cyclotron resonance. 3 ~ The formalism we present en-
compasses the previous work and the precise defini-
tion of local power absorption provides a clear exten-
sion to other applications such as higher-harmonic or
minority-ion heating.

We first present the definition of local power ab-
sorption based on the nonlocal wave-particle interac-
tion. The definition is developed under the assump-
tions of the Vlasov theory of plasma waves. 5 Using
this definition we outline the derivation of an expres-
sion for the local steady-state power absorption for
time-harmonic waves in a plasma with one-
dimensional nonuniformity. The result, presented in
Eq. (9), is valid to second order in the ratio of gyrora-
dius to wavelength and is therefore applicable to mul-
timode propagation in the ion-cyclotron range of fre-
quencies. Next, we indicate how such an expression
may be used to derive a corresponding local conserva-
tion relation. Finally, we examine the limit of the
homogeneous plasma. We prove that the fundamental
definition of power absorption which we employ, Eq.
(1), is correct in the homogeneous case. This fact,
along with other evidence presented in this paper, in-

dicates that our form is also valid in the inhomogene-
ous case.

We define the local power absorption P(r) as the
time-average rate of change of the energy of the group
of particles which pass through r. P(r) must equal the
average rate of work done by the wave field on these
particles. Consider a set of plasma particles with coor-
dinates (r, v) at time t Let . r = t —t' and let
r'(r, v, i), and v'(r, v, r) define the unperturbed tra-
jectory these particles travel; thus r'=r and v'=v at
r =0. The instantaneous rate of work that the field
does on such a particle at time t' is given by
qE(r', t') v'. To obtain the average rate of work per-
formed on all the particles in the set, the single particle
is weighted by the distribution function evaluated at
r', v', t' and the time average of the product is comput-
ed as t' varies. Finally, the total power absorbed by all

the particles passing through r is obtained by an in-
tegration over v as follows:

P(r) =~i d v(qE(r', t') v'f&'(r', v', t')),

where angular brackets denote the time average over t'

and the asterisk indicates the complex conjugate. The
complex power is defined in Eq. (1) and the real
power transfer between the wave fields and the plasma
particles is determined by —,ReI P(r) ). Since the
equilibrium distribution function is stationary in time,
only the perturbed distribution function appears in Eq.
(1). It should be noted that E(r) J(r) cannot
represent the local power absorption in a hot plasma,
since the work done by E is not evaluated along the
trajectories of the plasma particles.

The perturbed distribution function appearing in Eq.
(1) may be computed in the usual manner by solution
of the linearized Vlasov equation by the method of
characteristics,

t
ft (r', v', t') = —(q/m)J dt" [E(r",t") + v" x B(r",t") ] Q foldv".

The characteristics are identical to the unperturbed orbits, r" = r'(r, v, r'= t —t"), etc.

(2)
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IVz= Vz,

where

g= v~e'""+i(e/o)p) [ —v u~e'""+ v+e' ""],
v + = (ux + tv~)/2, Q)p = Qjz + Ev&,

(3)

Consider now a one-dimensional configuration in
which the plasma is uniform in the y and z directions
and is immersed in a z-directed magnetic field Bp. The
magnitude of Bp, the density, and the temperature are
functions of x. We assume that the scale lengths of
these quantities are large compared to the transverse
scale length of the wave field. The wave electric field
is assumed to be of the form E(r, t) = E(x)
&& exp(ik, z —idiot) where E(x) is complex and k, and

a& are taken to be real. To first order in e (e = Bp/Bp)
the unperturbed particle orbitals for such a situation
are as follows5:

v„'=g+g, vy' ———t(g —g') 2ev+v /o)„

field along particle orbits:

E(x') =E(x)+AxE'(x)+. . . . (5)

The remainder of the derivation is outlined as follows:
The perturbed distribution function is evaluated via
Eq. (2) with use of the equilibrium distribution fp, the
wave field of Eq. (5), and the trajectories of Eqs. (3)
and (4). Collecting terms by powers of exp(iQ)pr) we
obtain

f)(r', v', t')
I I

=i(q/m)e' " "'
X e' ""b /cr

where a. =co+ mcup —k, v, and the coefficients b are
functions of E, E', . . . , v, fM, fM, and e. Similarly,

E(r', t') v'

i(k z —cut ) p=e „e
and

Q'T

b,x=x' —x= — v'(t')dt', z'=z —v r. (4)

where the coefficients a„are comprised of those terms
in b„which have 2fM/u as a multiplying factor.

Using these results we form the product

The equilibrium distribution is assumed to have the
form

fp(xg. v) =fM(x, v') + (vs/~, ) t)fM(x, v')/Bx

where f'M(x, v ) is a local isotropic Maxwellian. Since
the wave fields may be nonsinusoidal in the x direc-
tion, a Taylor series is used to represent the electric

qE v'f~' = —(iq/m) g e "' a„b'/o'. (8)-

To calculate P as defined by Eq. (1) we take the time
average of Eq. (8) which annihilates all but the m = n

terms. An integration over velocity space completes
the calculation. Using Eq. (5) truncated to second or-
der yields P(x) =i cuepg, g„p„(x) where

pp = 2& I
—

gp Zp
'

l 2
I E I

+ p ( I E '
I + E E"'+ c c.) ] + 2p Zp I

Ey' I'+ p Zp
' (E Ey" + c c.)

—op[Zp' (E~E,'+ c.c.) + 2pZp'(lE~I )'] ] —(d/dx) [b p gpZp' ] (IE, I
)',

p t
= b ( —,

' Zt' {4 ( E+ ) + p [2( [ E+ (
)"+ E~ (E„"—3iEy') "+c c.] } —i p Zt" (E+E —c c.)

—p $&Zt" [E,'[ + up Zt'/2(E+E" +c c.)) +2(d/dx) [~p'Zt ](IE+ I')',

(9a)

(9b)

where b, = co~~/(4cuk, u), Z„ is the plasma dispersion function of argument g„= (cu —neo, )/k, u, Z„'= dZ„/d(„, p is
the thermal gyroradius, and c.c. is the complex conjugate of the previous term. The corresponding p „'s are ob-
tained from the p„'s by the replacements n —n, E+ E, i —i, e/k, —e/k, . Several physical processes
can be identified in P(x). The first three terms in pp are respectively a Landau damping term, a transit-time mag-
netic pumping term, and a cross term. The lead terms in p~ and p2 are the fundamental and second-harmonic cy-
clotron damping terms. The expression is valid to first order in gradients of the magnetic field, density, and tem-
perature, and to second order in the scale length of the wave field, all of which are long compared to an ion gyrora-
dlus.

A power-conservation relation appropriate for the slab configuration may be derived from the expression for the
local power absorption. The following familiar quadratic form is readily derived from the time-harmonic form of
Maxwell's equations:

(djdx)(&~&' —E,HY')+i«p)E[2 icuyp[H)z+—E J'=0. (10)

Next we observe that E J' may be extracted from P as follows. Repeated application of the differential identity
A'B = (AB)' —AB' to any expression, F, written in a form such as Eq. (9) yields an equivalent expression of the
form F=E G' —dH/dxwhere Gcontains derivatives of E. For example, the term b, p Z2'~E+

~
appearing in Eq.

(9c) becomes E [ —(x—iy)(hp Z2E+ )']'+ (d/dx)(bpzZ2E+E+'). The first contributes to E J' and the
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associated with Eq. (9). In the context of the slab
model, with the further approximation E, = 0, our
results for P, S, and J encompass those obtained by
other researchers.

We now consider a single wave mode propagating in
a uniform, thermally isotropic, Maxwellian plasma. In
such a situation the x variation of the wave field is
given by Eoexp(ikix) where kj is in general a com-
plex solution of the hot-plasma dispersion relation for
real frequency co. After transformation to cylindrical
velocity-space coordinates (vj, @,v, ), the perturbed
distribution functions take the form

second to dS/dx. A proper definition of P must
satisfy the condition that the above procedure yields

p(x) = E(x) J'(x) —dS(x)/dx,

where J' = jd v vs'. That is, the factor multiplying E
obtained in this manner must be identical to the conju-
gate current density obtained from the first velocity
moment of fi. If this is true then a power-
conservation relation for wave propagation in a slab
geometry is obtained by use of Eq. (11) to replace
E J' in Eq. (10). S(x) is interpreted as the kinetic
flux due to coherent motion of the plasma particles in
the wave field.

We have verified that the P given by Eq. (9) does in
fact satisfy Eq. (11). Length constraints prevent us
from listing in this Letter the expressions for J and S

where

fi (r', v', t')

Cei(t+y sing) ~ e
'"(~c~++i

~n 0/n ~ —n (12)

n„= (vi/2) [E l„+i(y) + E+J„ i(y) }+ v E,J„(y),y = kzvz/co

E+ =E„+iE», C=2iqfM(v)/(mu ), (=kix+k, z' —cut', and u= thermal velocity. The scalar product E(r',
t') v' has the same form as ft with the replacements C l, o.„1.Notice that we no longer require a small
gyroradius. Using these results we form the product

qE v'f; = —(2iq /mu )fMe «Xe ' n„n~/o' ~, (13)
n, m

where y = 2kj;(x+ vi sin@/co, ). To calculate P as defined in Eq. (1) we take the time average of Eq. (13) which
annihilates all but the m = n terms. Integrating over velocity space gives

P= —X, (2iq /mu2))l d v fMe»g„in„i /cr' „, (14)

lim —,
' ReP(x) = ,' cuE,"e;i(k„„)Ei, —

ii
(15)

where e,i(') H is the (anti-) Hermitian part of the
equivalent well-known dielectric tensor. 5 The right-
hand side is recognized as the usual weak-damping
result.

A direct consequence of Eq. (15) is that the kinetic
flux associated with Eq. (1) must also agree with the

where s designates particle species. The pole defined
by v, = (co' —neo, )/k, will be slightly below the real v,
axis if cv is given a small positive imaginary part. For
purely real ~ the v, integration contour is deformed to
pass above the pole; thus Eq. (14) reveals ReP(x) to
be a positive definite quantity. In fact, the positive
definite nature of ReIPI in the homogeneous limit
does not rely on the single-mode representation since
then b„=2a„f~/u in Eqs. (6) —(8). This is another
important property which a correct formulation of local
power absorption must satisfy.

It is worthwhile to compare Eq. (14) with the corre-
sponding result of weak-damping theory. If the ex-
pression in Eq. (13) is evaluated at r =0 and an in-
tegration over velocity space is performed, we obtain
E J'. In this case the @ integral selects m = n. The
result becomes identical to Eq. (14) when both are
evaluated at ki = ki„and thus

results of conventional weak-damping theory in the
corresponding limits. From Eq. (14) we observe that
the x dependence of P goes like exp( —2k';x), and
thus kj;P= —', dP/dx. Applyin—g this fact to an ex-
pansion of P about ki„, P=P(kl, )+iki; BP/Bki„
and using Eqs. (11) and (15), we can show that

lim —, ReS(x) = — EE,.—L 1 .()e;,"(k„).

Ici . 0 4 ' Bki„
(16)

Thus we see that the expression we have presented
for local power absorption is motivated by the funda-
mental definition of the work performed on a charged
particle in an electric field. It is always positive defin-
ite in a homogeneous plasma and the corresponding
conservation relation reduces to the correct weak-
damping limit. Furthermore, the explicit form derived
for a particular inhomogeneous plasma is seen to obey
a proper conservation relation. While a general proof
of the correctness of our formulation remains to be
found, the above properties lend strong support to its
validity.
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