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Heat-transport measurements in a normal-fluid *He-*He mixture contained in a porous medium
and heated from below show a bifurcation to steady or oscillatory flow, depending on the mean
temperature. With increasing Rayleigh number R the oscillatory state is entered via a forward Hopf
bifurcation with frequency w.> 0. As the stationary bifurcation is approached by change of the
mean temperature, o, vanishes. With increasing R, the oscillatory state terminates with vanishing
frequency and finite amplitude in a hysteretic bifurcation to a steady state. Those observations

agree with recent theoretical predictions.

PACS numbers: 47.20.+m, 47.25.—c

In a binary fluid mixture contained in a porous
medium and heated from below, the convecting state
may be either time periodic or stationary, depending
on the value of the separation ratio ¢.! Thus, there
are two bifurcation lines in parameter space; and a
codimension-two (CT) bifurcation occurs at the point
where these lines intersect. In the vicinity of the inter-
section, competition between the two nonlinear states
leads to interesting linear and nonlinear phenomena.
For that reason, CT bifurcations have attracted consid-
erable attention recently.? They are also of great
current interest because one expects that external
modulation of the control parameter by a single fre-
quency can lead to chaotic behavior in the immediate
vicinity of the convective threshold.?

We present sensitive heat-flow measurements at
cryogenic temperatures, using a liquid mixture of 3He
and “He in a porous medium. We are able to vary ¢
through the CT value by changing the mean operating
temperature. Our measurements confirm five key
theoretical predictions based on an amplitude equa-
tion* for the region near the CT point, namely: (i)
Near the CT bifurcation, the Hopf bifurcation to the
time-periodic state is forward. (ii) When ¢ is changed
so as to approach the CT bifurcation, the frequency of
the Hopf bifurcation vanishes. (iii) As the Rayleigh
number R is increased beyond the Hopf bifurcation,
the frequency goes to zero while the amplitude stays
finite. (iv) The second bifurcation (iii above) is hys-
teretic. (v) The range of R over which oscillations are
observed vanishes at the CT point.

The experiments were done with a mixture of molar
concentration X =0.030 of 3He in *He at temperatures
above the superfluid-transition temperature 7) =2.127
K. This fluid is versatile for reaching the CT point be-
cause ¢ can be changed over a wide range by a change
in the temperature. The separation ratio is given by

U= — k1B TR, (D

where B,=—p 1(8p/8X)pr and Bi=—p 1 (3p/
97)py, and where k; is the thermal diffusion ratio.
For T=T),+0.014 K, B, vanishes and thus §y = — oo.
At a somewhat higher temperature, ky changes sign’

and ¢ =0. Therefore the separation ratio can be varied
from —oo to positive values by an increase in the
mean temperature. Our measurements cover the
range —0.16 <y <0.1.5 The Lewis number L (the
ratio of the mass diffusivity to the thermal diffusivity)
was about 0.03.5

The convection cell was 4.76 mm high, 19.18 mm
wide, and 38.51 mm long. The top and bottom plates
were made of copper which has a high thermal conduc-
tivity, and the sidewalls of the low-conductivity ma-
terial Vespel SP22. The cell contained a porous medi-
um consisting of 1082 nylon spheres with diameter
1.59 mm packed in a body-centered cubic array. Thus,
the medium consisted of four layers, containing alter-
nately 12X 24 and 11x 23 spheres. The cell was filled
with the mixture at 7=2.13 K at a pressure of 0.2 bar,
and sealed by a valve located on top of the cell. There-
fore, the concentration of *He in the cell was constant,
but the pressure changed with the temperature. The
cell was installed in a low-temperature apparatus
described elsewhere.” The temperature 7T of the top
plate and the temperature difference A 7 between the
top and bottom plates were measured with germanium
thermometers. For the heat conduction measure-
ments, 7 was regulated to 0.5 wK. The bottom was
heated with a constant power.

Figure 1 shows the region of the stability diagram of
the system! which was explored by our measurements.
Changes in the reduced Rayleigh number R/R,(ys
=0) correspond to changes in A 7, whereas changes in
the separation ratio {y are accomplished by changes in
the operating temperature 7. The solid line labeled
R, is the Hopf bifurcation line, and that labeled R,
corresponds to the stationary bifurcation. The two
lines meet at the CT point.

Figure 2 shows the heat conduction of the cell as a
function of A T for the three temperatures correspond-
ing to the vertical dashed lines in Fig. 1. At the
highest 7, ¢ =0.03 and theory! indicates that the bi-
furcation to the convecting state should have occurred
at AT =3 mK. However, that bifurcation is not visi-
ble because the initial slope of the heat conduction
curve beyond it is smaller than that for a single-
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FIG. 1. Stability diagram of a mixture with L =0.03 con-
tained in a porous medium and heated from below. The
vertical dashed lines correspond approximately (see Ref. 6)
to those experimental paths for which data are given in Fig.
2. The solid line labeled R, is the Hopf bifurcation, and
that labeled R is the stationary bifurcation. At the position
of the arrow, R, diverges. The dash-dotted line indicates
the upper limit for the existence of the oscillations central to
this paper.

component fluid by a factor of about L3/y =10738
At AT near 6 mK, where the fluid would have under-
gone a bifurcation in the absence of the thermodif-
fusion effect (y =0), convection becomes apparent in
the data. The heat conduction curve for ¢ =0.03
shows no hysteresis and AT shows no oscillations, as
expected for ¢ > 0.

At the lowest 7 (small expansion coefficient,
Y = —0.16), the measurements show hysteresis. As
A Tis increased from zero to 10.5 mK, the conductivi-
ty is almost constant. At AT =10.5 mK this purely
conducting state becomes unstable against a hysteretic
transition. The flow reached on the upper branch
(after transients) is either steady or oscillatory,
depending on A7T. These phenomena are qualitatively
similar to those observed for bulk binary mixtures in
other experiments,’~!! where they have been attribut-
ed!? to a subcritical Hopf bifurcation. The oscillations
that exist on the upper branch are not the ones
relevant to the CT theory of Brand, Hohenberg, and
Steinberg,* since they bifurcate from a nonlinear state.
We observed the hysteresis illustrated in Fig. 2
(T=2.1653 K) for y < —0.03 and T < 2.188 K, but
not for larger ¢ and T

For the middle temperature, 7T=2.2217 K, corre-
sponding to ¢ =0, no oscillations are observed. This
temperature, however, is very close to the CT point.
Further reduction of T'to 2.2216 K leads to oscillations
setting in at a 6.1-mK temperature difference. These
are the important ones for our work. They are
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FIG. 2. The conductance of the cell as a function of the
temperature difference AT between top and bottom plate
when heated from below. The numbers given in the figure
are the temperature of the top plate in kelvins. Open (solid)
circles are taken with increasing (decreasing) A 7. The small
horizontal bar indicates the range of the oscillations shown
in Fig. 4 below. It emphasizes that this range is small on the
scale of Fig. 2.

described in more detail in Figs. 3, 4, and 5.

Figure 3 shows oscillations measured at 7'=2.2064
K. For small AT (6.364 mK and below) no oscillations
are observed. They set in via a forward Hopf bifurca-
tion between 6.364 and 6.371 mK. Further increase of
AT leads to an increase of the amplitude and a de-
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FIG. 3. The temperature difference across the cell, with
the bottom plate heated at constant power, for six different
values of that power. The numbers on the left indicate the
mean temperature difference between top and bottom plate.
The top temperature is 2.2064 K.
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crease of the frequency. The smallest frequency is ob-
served at a temperature difference of 6.936 mK.
Although the time series shown for that AT covers
only 2 cycles, corresponding to 6 h, we made measure-
ments under similar conditions for 22 h and on the
basis of those believe that the state is periodic. An in-
crease by 3 uK of AT then leads to a steady flow state.
This second bifurcation is accompanied by hysteresis:
The temperature difference has to be lowered down to
6.84 mK to get the oscillatory state back. The approxi-
mate location of this hysteretic bifurcation is indicated
in Fig. 1 by the dash-dotted line.

Figure 4 shows the frequency of the observed tem-
perature oscillations as a function of A T for three dif-
ferent temperatures. The upper curve corresponds to
Fig. 3. At larger T (2.2168 K), the range of oscilla-
tions is smaller and the frequencies are lower. This
tendency continues with further increase of T (2.2197
K). For T=2.2217 K (see Fig. 2), no oscillations are
observed because ¢ has been raised beyond its CT
value.

Figure 5 shows the frequency of the oscillations
measured at the smallest temperature difference at
which they exist, for different top temperatures.
There are obviously two different branches. The fast
oscillations (below 2.204 K) correspond to the case il-
lustrated in Fig. 2 for 2.1653 K. They are reached via
a hysteretic bifurcation. The interesting oscillations
for this work are those of the slow mode observed at
higher temperatures. Their frequency should corre-
spond to the frequency given by linear stability
analysis. It goes to zero at a temperature close to 2.22
K.

Close examination of the data in Fig. 2 at 2.2217 K,
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FIG. 4. The frequency of the temperature oscillations of
the bottom plate as a function of the mean temperature
difference for three different top temperatures. The labels
indicate the temperature of the top in kelvins.
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and similar measurements using pure “He, indicate
that the bifurcation to the steady convective state is
imperfect!? in our cell (presumably because of hor-
izontal temperature gradients caused by the porous
medium, especially in the neighborhood of the lateral
cell boundaries). This raises the question whether the
main. features of a codimension-two bifurcation exist
in the. presence of an imperfect bifurcation to the
steady state. To shed some light on this problem we
examined the equation

W—aW—-BW+fLWW— fiW?3
+f3W5—h=0, (2)

which gives the amplitude W of the convective flow in
the vicinity of the CT point.*!* Here the dots indicate
time derivatives, and « and B are proportional to the
vertical distances in Fig. 1 from the curves labeled R,
and R, respectively. The fifth order term is added to
stabilize'* the solution for 8 > 0 and the field # includ-
ed to account for the “‘rounding’’!? in the experiment.
Steady solutions W, of Eq. (2) are determined by

fsWs — AWE —BWy— h=0. 3)
Near the CT point, f; > 0 and thus for # =0, Eq. (3)
corresponds to a backward bifurcation at 3=0 (i.e., at
R.).* In that case, there exist five real roots of Eq.
(3) over the range — f7/4f; < B < 0, corresponding
to three stable and two unstable fixed points. For
|| > 0, the bifurcation will be imperfect.!> A linear
stability analysis of the three stable fixed points, using
Egs. (2) and (3), shows that W, becomes unstable
against small oscillations at

&, = f2 W()zr (4)
and that the frequency at onset is given by

wl=—B—=3/1W§ +5/3W§ = Wy(dp/aW,). (5)
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FIG. 5. The frequency measured at the onset of the oscil-
lations as a function of the top temperature.
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Thus, o, will vanish even for |#|> 0 provided the
curve Wy(B) is folded so that dB/dW, vanishes. If,
however, the field is large enough to destroy the hys-
teretic fold of that curve, the frequency of marginal
oscillations will remain finite. In the experiment, w,
goes to zero (Fig. 5), indicating that | 4| is sufficiently
small for the hysteresis to survive. This also implies
that the unstable fixed points corresponding to two of
the roots of Eq. (3) still exist, and thus the orbit of the
limit cycle generated at the Hopf bifurcation can ex-
pand with increasing « and pass through one of them,
thereby yielding a vanishing frequency at finite ampli-
tude as shown in Figs. 3 and 4.

Our evidence for a subcritical steady bifurcation in
the neighborhood of the CT point is mostly indirect.
The measurements support the existence of the un-
stable fixed point as discussed above. However, a
direct measurement of the hysteresis loop at a top
temperature of 2.2218 K (very close to the CT point)
showed that its range was only approximately 10 wK.
The difference in the conductance of the two stable
branches was 1 uW/K or 0.03%. A bulk mixture
(rather than a porous medium) will be preferable for
observing the hysteresis. The smaller field will in-
crease the range, and the absence of heat conduction
through the nylon spheres will increase the relative
difference of the cell conductance for the two
branches.

An unresolved problem arising from this work is the
fact that the frequency of the oscillations increases
with AT in the neighborhood of the Hopf bifurcation
(see Fig. 4). This is not caused by our constant-heat-
flow measurement. We also performed the experi-
ment by regulating the bottom temperature and
measuring the heat current, and obtained the same os-
cillation frequency. Numerical integration of Eq. (2)
with and without a field # did not show this behavior.
Finally, we integrated the partial differential equation
which includes the slow spatial variation of the order
parameter [Eq. (3.9) of Ref. 4] and found that the fre-
quency of the oscillations in the numerical experiment
went down monotonically beyond the Hopf bifurca-
tion, and neither vanishing nor the finite boundary
conditions used by us led to an increase of the fre-
quency similar to the one observed in the experiment.
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