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We suggest that ionic conductors containing a dispersed insulating phase are suitable materials
for investigating static and kinetic aspects of percolation. We develop a lattice model for the two-
phase mixture with special emphasis on the role of an enhanced interface conductivity. By using
two-dimensional Monte Carlo simulations we show that our model correctly describes the distinct
conduction properties of those materials, and in addition displays the critical behavior of both
random-superconducting and random-resistor networks at two different critical concentrations.
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Ionic conductors like LiI or AgI show an enhanced
conductivity after addition of small particles of an in-
sulating second phase, e.g. , of A1203.' Enhance-
ments up to two orders of magnitude have been re-
ported, initiating considerable practical interest in
these materials as suitable electrolytes in solid-state
batteries. Physically, it is widely accepted that the
overall effect is a result of an enhanced conductivity
along the interface between the conducting matrix and
the dispersant particles, possibly through the forma-
tion of space-charge layers. 3

In this Letter we suggest that materials of that type
are unique examples for studying various aspects of
percolation. 4 Our concern is the charateristic depen-
dence of the overall conductivity cr on composition, as
observed through experiment. The conductivity
shows a marked initial increase with dispersant con-
centration p, followed by a rapid drop, '2 which seems
to extrapolate to zero at some threshold concentration.
We construct a lattice model which incorporates the
effect of an enhanced interface conductivity and inves-
tigate the conductivity by Monte Carlo simulations.
Our results correctly describe the main features of the
measured function a. (p). A detailed analysis shows
that our model may display the critical properties of
both a random resistor networks 9 and a random su-
perconducting network5 6 9 '2 near certain threshold
concentrations p, and 1 —p„respectively.

In our quantitative study, we start from a two-
dimensional square lattice and generate our two-phase
mixture by producing random occupation of unit
squares with probability p. Representative examples
are shown in Fig. 1 for a few values of concentration p.
The sides of the squares are called bonds and have
three different conductances. Consider a given bond
and its two adjacent squares. If both squares are occu-
pied, the conductance is zero; if only one of them is
occupied the conductance is taken as a-q, the interface

conductance. Finally, if none of them is occupied, the
conductance is o.z. In this way we model the conduc-
tance properties of a composite system containing a
fraction p of insulating phase in a conducting matrix,
with the special feature of a modified interface con-
ductivity.

Let us now assume that o.z » a it and discuss the
qualitative behavior of the conductivity as expected
from Figs. 1(a)—1(c). For small p there are preferred
paths connecting the surface of isolated clusters, giv-
ing rise to a certain enhancement of the current flow.
A pronounced increase of the conductivity is expected
for the situation shown in Fig. 1(b), where a macro-
scopic path consisting only of o-„bonds is formed for
the first time. In two dimensions, this onset of "inter-
face percolation" precisely coincides with the thresh-
old p,

' for percolation of next-nearest-neighbor clus-
ters. In the square lattice, p,

' = 1 —p„where
p, = 0.593 is the threshold for nearest-neighbor per-
colation. 4 On increase of p, the conductivity will first
go further up. However, beyond the threshold
p,"=1—p,

' for percolation of next-nearest-neighbor
clusters of the conducting material (which equals p,
here), we have o- = 0 [see Fig. 1(c)]. Thus, the
enhancement mechanism destroys itself shortly after
becoming most effective.

Now we turn to the quantitative analysis of the con-
ductivity cr, which we achieve by mapping our resistor
model on a random walk. The walker jumps between
sites which are the end points of the bonds, with hop-
ping rates ~g ~ try, ~it ~ (Ttt, and vo '=0, corre-
sponding to the three types of bonds introduced above.
In order to deal with hopping rates ~q ' and v~ ' with
an order-of-magnitude difference, we follow a method
of Ref. 11, recently developed for diffusion in random
composite media. '3 Here we use the following rules.
Initially, the walker is either on sites belonging to the
conducting matrix or on ones belonging to the inter-
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FIG. 1. Graphs of our two-phase mixture for three con-
centrations p of the insulating phase. Shaded clusters corre-
spond to the dispersed phase. Some of the paths involving
only highly conducting o-~ bonds are marked by dark lines.
(a) p =0.2, dilute systems; (b) p =0.407, onset of interface
percolation at p,'= I —p, ; (c) p =0.593, disruption of con-
ducting paths at p,

"=p, .

face. Within the conducting matrix the walker
proceeds at random in any direction with one step per
unit of time. Once the walker has arrived at an inter-
face site it chooses at random one of the four possible
directions, which corresponds either to an insulating
bond, to a o.z bond, or to a o.tr bond. Then with pro-
bability 0, 1, or r '=rz/r~~1, respectively, the
walker will step along the attempted direction. For
steps along the interface, time will not be counted.
Thus, the walker will spend about ~ steps in the inter-
face within one unit of time, which corresponds to the
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FIG. 2. Diffusion constant as a function of p for different

ratios r = o.q/o. s between interface and bulk conductance.
Open square, v =1; filled square, 10; open circle, 20; filled
circle, 50; open triangle, 100; and filled triangle, 200. Error
bars of simulation data for v =100 are indicated. The inset
shows experimental results on a logarithmic scale for the
conductivity in units of A ' cm for AgI-A1203 mixtures,
the upper and lower curve corresponding to undried and
dried Alq03, respectively (after Ref. 2, reprinted by permis-
sion of the publisher, The Electrochemical Society, Inc.).
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desired enhancement of the interface diffusion by a
factor of r.

We calculated the mean square displacernent
(r (t) ) of the walker as a function of time t by using
the Monte Carlo method. Our simulations were car-
ried out on a square lattice of size 500&& 500. To obtain
(r (t) ) we averaged over typically 2&& 103 initial confi-
gurations, consisting of 200 random lattice configura-
tions with ten walks on each lattice. The asymptotic
regime of the walk, where (r2(t)) = Dt, was reached
at about 103 time steps for p ( 0.5. For larger concen-
trations, in the neighborhood of p,", sometimes more
than 106 time steps were needed. In this way we deter-
mined the diffusion constant D, which is proportional
to the conductivity o- according to the Nernst-Einstein
relation. "

Results for different values of r are summarized in
Fig. 2. The qualitative features of our curves are in
close agreement with the measured dependence of the
conductivity on the content of insulating material. Ex-
trapolation of our data shows that a value of r —500
would be needed to produce a maximum conductivity
enhancement of two orders of magnitude. Such an
enhancement can be reasonably accounted for by a



VOLUME 55, NUMBER 1 PHYSICAL REVIEW LETTERS 1 JULY 1985

20

D{p,&)
D{p=0)

10

D{a.&)
D{p=0)

2

0.5

0.05 0.1 0.2
Pc- P

FIG. 3. Logarithmic plot of the diffusion constant vs
p,

' —p, where p,
' =1 —p„ for r =50 (filled circle), 100 (open

triangle), and 200 (filled triangle). The straight line corre-
sponds to the exponent s = 1.3.
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FIG. 4. Logarithmic plot of the diffusion constant vs
p,
"—p, for v =1 (open square) and r =10 (filled square).

The straight line corresponds to the exponent p, =1.3.

space-charge-layer model, where the increased inter-
face conductivity is attributed to an excess of defects at
the interface. 3 It is well known' 2 that the measured
ratio o. (p, r)/cr(0) depends on the detailed conditions
of sample preparation, in particular on the water con-
tent of the A1203 phase. Changing the water content
therefore offers the intriguing possibility of varying
our parameter ~ experimentally.

Keeping this point in mind we now analyze our
results in more detail. First we note that for p well
below p,

' the diffusion constant D(p, r) saturates rap-
idly for larger r. The following interpretation is obvi-
ous. If r is such that after r moves the walker will
leave the surface of a cluster of insulating component
at any site with nearly the same probability, then a fur-
ther increase of r would no longer be advantageous,
i.e. , o- saturates. The limiting function D(p, ~),
which diverges at p,', corresponds to a "superconduct-
ing" interface. It should therefore display the charac-
teristic critical behavior observed in a random super-
conducting network near the percolation threshold.

To test this we have plotted D vs e'= p,
' —p for dif-

ferent r up to our largest value 7 =200 (see Fig. 3).
For large ~ and small e' our data tend to assume a
power-law divergence,

where s is compatible with the accepted exponent
s=1.3. We have also confirmed that close to p,',
D(p, r) satisfies the scaling relation't

D (p, 7 ) = r "R'(e'r~), (2)

where @= u/s and u = 0.5 in two dimensions. 6 Within
our numerical accuracy the normalized scaling func-
tion h (x) —= H(x)/H(0) coincides with the corre-
sponding scaling function found for two-component
mixtures. " This indicates that our system near p,

' be-
longs to the same universality class as usual two-

component systems near p, .
In the vicinity of the percolation threshold p,

" the
blocking effect becomes dominant. Then the diffusion
constant tends to zero. Figure 4 shows that our data,
for fixed r, are consistent with the well-known power
law

which describes the critical behavior of the diffusion
constant in random resistor networks. s 9

In summary, we have shown that ionic conductors
containing a dispersed insulating phase are good candi-
dates to investigate the predictions of kinetic percola-
tion theory in a real system. Although we have con-
sidered a two-dimensional system here, we expect the
essential physics to remain unchanged in three dimen-
sions. In three dimensions, the percolation of clusters
of cubes having one corner in common must be con-
sidered and we expect the critical indices p, and s to
change to p, ——2.0 and s= 0.7.4 These exponents
should be detectable in dispersed ionic conductors and,
in addition, the interesting phenomenon of anomalous
diffusion7 ' in both the random resistor and the ran-
dom superconducting network might become experi-
mentally accessible.
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