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Traveling Waves and Chaos in Convection in Binary Fluid Mixtures

R. W. Walden, Paul Kolodner, A. Passner, and C. M. Surko
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
(Received 2 May 1985)

Rayleigh-Bénard convection is studied in alcohol-water mixtures in which the diffusion of con-
centration opposes convection via the Soret effect. Near onset, the convective rolls are found to
move continuously as traveling waves, in contrast to the stationary roll patterns observed in homo-
geneous fluids. Dependent upon the temperature difference across the fluid layer (i.e., Rayleigh
number), these traveling-wave states are either periodic or chaotic. At larger Rayleigh numbers,
time-independent flow is observed which is the same as that expected for the homogeneous fluid

mixture.

PACS numbers: 47.25.—c

There is considerable interest in understanding the
nature of convection in a horizontal fluid layer heated
from below (i.e., Rayleigh-Bénard convection).!™*
Convection provides a particularly useful model of
nonequilibrium dissipative systems, since the fluid
equations which describe the system are well known,
and, from an experimental viewpoint, the boundary
conditions on the system can be well controlled. Con-
vection in a homogeneous fluid is described by two
parameters: the Rayleigh number R, which is propor-
tional to the temperature difference across the fluid
layer, and the Prandtl number P, which is the ratio of
the rate of dissipation of momentum to the rate of dif-
fusion of heat. For such a fluid, the first flow pattern
above the onset of convection is known to be a set of
nearly parallel rolls which are stationary in space.

The description of convection in a binary fluid mix-
ture requires two additional parameters, the Lewis
number L = D/k (where D is the diffusion coefficient
and « is the thermal diffusivity of the mixture) and the
separation parameter .>¢ The quantity ¢ is the ratio
of the coupling of concentration fluctuations with
gravity to the coupling (via thermal expansion) of
temperature fluctuations with gravity. Specifically,
v =c(1-c)(a'/a)Sy, where Sy is the Soret coeffi-
cient which relates the concentration flux to an im-
posed temperature gradient, ¢ is the weight con-
centration of one component, «’ =p~1(dp/dc)p 7,
a=p~1(8p/dT)p,, p is the density, and T'is the tem-
perature.>® If ¢ is negative, the thermally induced
concentration gradients oppose the onset of convec-
tion. For the experiments described here, L << 1
< P. 1In this case, when ¢ < — L2, the first convect-
ing state is known to be time dependent.>”-# To our
knowledge, the flow pattern associated with this time-
dependent state has not previously been studied exper-
imentally. Recently, it has also been suggested that,
for ¢ sufficiently negative, the first convecting state
might exhibit both spatially and temporally incoherent
behavior.?

We have studied convection in mixtures of ethyl al-
cohol and water for negative values of . We find that
the flow is chaotic at the lowest values of R for which

convection persists. At larger R, periodic states are
observed. Associated with all of these time-dependent
states are qualitative changes in the flow pattern,
perhaps best described as a continuous motion of the
rolls in the lateral direction. As Rayleigh number is
increased further, the time dependence ceases, and the
convection pattern and heat transport are those which
would be expected for convection in the homogeneous
fluid.

The experimental apparatus is similar to that
described previously* and consists of a container of
height d=0.52 cm with horizontal dimensions
2.3%x4.9 cm? The bottom plate of the container is
copper, the top plate is sapphire, and the cell walls are
glass. The temperature field associated with the con-
vective flow pattern is visualized from above by use of
a shadowgraph technique.* The Nusselt number N
(i.e., the ratio of the heat transport through the layer
to that due to thermal conduction alone) is also mea-
sured.

We define the reduced Rayleigh number r=R/R,,
where R, is the Rayleigh number for the onset of con-
vection calculated with use of viscosity, thermal dif-
fusivity, and thermal expansion coefficient of the
homogeneous fluid mixture.!® Shown in Figs. 1(a) and
1(b) are measurements of N as a function of r for an
8%-by-weight mixture of ethyl alcohol in water at 10
and 20°C. Since the heat current is held constant, r
decreases and N increases when convection begins
(dashed lines with ascending arrows). As shown by
the solid curves in Fig. 1, the dependence of N on ris
quite similar to that expected!! for time-independent
convection in a fluid with the properties of the homo-
geneous mixture.! A large hysteresis is observed
between the onset and the cessation of the flow, as is
expected from previous experiments®>’ on similar mix-
ture. For these mixtures L ~ 10~ 2. In this case con-
vection begins at the onset of a time-dependent insta-
bility; the reduced Rayleigh number r, at the onset of
conveéction is

re=1—y(1+y+1/P)"1, ¢))

where we have neglected terms of order L << 1.°77
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FIG. 1. The Nusselt number (i.e., the heat transport
through the fluid relative to that due to conduction) as a
function of r= R/R, for values of the separation parameter
(a) y= —0.35and (b) yy = —0.6. The solid curves are those
expected for steady convection in a simple fluid with the
properties of the fluid mixture. The dashed lines with ar-
rows indicate transitions between conducting and convecting
states. Also shown is the period 7 of the oscillations: (solid
triangles) periodic states, (open triangles) chaotic states with
a dominant spectral component at the period indicated, and
(squares, lozenges, and inverted triangles) periodic states
which exhibit subharmonics at 2, 3, and 5 times the period
indicated. In the inset in (b), the amplitude of the chaotic
motion, which is large only for these values of r, is denoted
by the error bars. The spatial patterns of the flow are also
indicated. The indicated boundaries are those obtained by
changing r away from that corresponding to the initial con-
vecting state [i.e., r=1.31in (a) and r =1.94 in (b)].

Equation (1) assumes free-slip boundary conditions.
Numerical calculations® indicate that, for the parame-
ters of our experiments, the assumption of rigid, im-
pervious boundaries increases the quantity »,—1 by
about 5%. By measuring r., we determine ¢ using Eq.
(1); we find ¢ = —0.35 for the data in Fig. 1(a), and

= — 0.6 for the data in Fig. 1(b).!?

The flow is observed to be time dependent when
r < 1.44 for ¢ = —0.35 [Fig. 1(a)] and when r < 2.7
for ¢y = —0.6 [Fig. 1(b)]. The time-dependent flow
pattern observed for y= —0.35 is illustrated in Fig.
2(a): Rolls are generated in one corner of the cell and
move continuously to the opposite end of the cell.
The particular direction of propagation in this transla-
tional state appears to depend on slight asymmetries in

/1.

(©

FIG. 2. Observed flow patterns shown schematically.
Heavy lines indicate upflow boundaries which move in the
direction indicated by the arrows: (a) translation state at
= —0.35, (b) “zipper state’ at yy = — 0.6, and (c) transla-
tion state at ¢y = — 0.6.

the initial conditions. We have, for example, been
able to reverse the direction of propagation by tran-
sient heating of the bottom plate of the container. The
period 7 of the motion is indicated by the upper data
set in Fig. 1(a). For comparsion, the vertical diffusion
time, 7,(k) = d%k, is 218 s for this mixture. Depend-
ing on the value of r, either periodic or chaotic states
are observed. These same time-dependent states are
observed when r is held constant as well as when the
heat current through the fluid is held constant. As ris
increased, the period of the motion increases. The
flow is periodic above r==1.34, while the period 7
continues to increase with r until the time dependence
ceases abruptly above r =1.44. If ris then decreased,
the onset of time dependence is hysteretic, beginning
at r==1.28. When the time dependence does begin
again, N(r) and 7(r) are the same as those observed
when r is approached from below. The period of the
motion continues to decrease with decreasing r. The
flow becomes chaotic very near the value of r at which
convection ceases again via a first-order transition
(r=1.17).

Data for y = — 0.6 are shown in Fig. 1(b). Convec-
tion begins as ris raised above 2.53. The first convect-
ing state, illustrated schematically in Fig. 2(b), is com-
posed of two moving sets of rolls which originate in di-
agonally opposite corners of the cell. The subsequent
motion of the two sets is confined to different halves
of the cell. The motion of the two sets of rolls in the
long direction of the cell is in opposite directions, and
the roll ends near the center of the cell connect and
disconnect as the motion proceeds. This “‘zipper”’
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state is periodic at r=1.94 with a period = ~— 1900 s.
[For this case 7,(x) is 227 s.] As r is increased, the
pattern undergoes a transformation to a purely transla-
tional state [illustrated in Fig. 2(c)], which is observed
above r=2.3. The time dependence ceases as r is in-
creased beyond 2.7. The convection patterns and
periods of motion obtained by decreasing r are similar
(except for the hysteresis mentioned above) to those
obtained by increasing r.

If r is decreased below r=1.9 for yy = —0.6, the
zipper state is observed with 7 continuing to decrease
until the motion becomes chaotic at r = 1.4. Associat-
ed with this chaotic state are flow patterns which are
similar to that illustrated in Fig. 2(b), but which vary
chaotically both in space and time. As r is decreased
further, convection ceases at r = 1.35 via a first-order
transition. In Fig. 3 are shown the power spectra of
the Nusselt number for three values of rin the vicinity
of this chaotic region. The dominant frequency
(which has increased to ~ 0.003 Hz near e =1.35) and
its harmonics and subharmonic broaden as r is de-
creased while an increasing, broad background is ob-
served which peaks at zero frequency.

For the values of ¢ studied here, previous theoreti-
cal work indicates that the flow should be time depen-
dent at the onset of convection. For L << 1< P, the
period of this motion is predicted to be>~’

1o=(4/3m)7, (k) [(1+¢+1/P)/(—y)]V2 2)

Equation (2) assumes free-slip boundary conditions.
Numerical calculations® indicate that the assumption of
rigid, impervious boundaries decreases 7, by about
30%. Using Eq. (2), we find for ¢ = —0.35 [Fig.
1(a)], 7q=135s; and for y = — 0.6 [Fig. 1(b)], 7= 284
s. In all cases, the period 7 observed in our experi-

POWER SPECTRAL DENSITY

FREQUENCY (mHz)

FIG. 3. Power spectra of the Nusselt number which illus-
trate the transition to chaos as r is decreased for ¢y = —0.6:
(a) r=1.424, (b) r=1.392, and (c) r=1.365. The state
shown in (a) is periodic; the width of the spectral lines and
the level of the background noise in (a) are instrumental.
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ments is large compared with the predictions of Eq.
(2); 7 approaches 7 only at the smallest values of r for
which convection is observed.

The theory for the oscillatory instability assumes
small-amplitude flow. Thus, the relevance of the
predicted oscillatory state to our experimental results
is not clear. As in previous experiments,>’”-8 we find
that the oscillatory instability appears to trigger the on-
set of convection.’> However, many of the properties
of the resulting, finite-amplitude states are those
which would be expected for time-independent con-
vection. For example, excluding the chaotic region at
lowest r, the time-averaged Nusselt number is that
which one would expect for steady-state convection,
and the observed fluctuations in NN are less than 1%.

The observed time dependence is due to the transla-
tion of the rolls with velocity v. The period of the os-
cillation is then the time 7= \/v for a roll pair to move
one wavelength. The wavelength A is approximately
constant over the range of r studied; thus v has a
strong dependence on r li.e., for constant A, v(r)
7 (]

A physical argument that a traveling-wave state
might be preferred can be made in the following way.
When convection begins, the rolls establish a lateral
temperature wave of wavelength A on a timescale
t ~7,(x). For y < 0, the alcohol concentration read-
justs on a slower time scale ¢ ~ ¢%/D via the Soret ef-
fect to oppose convection with alcohol-concentration
modulations and temperature modulations which are
exactly opposite in phase. If there is then a relative
displacement of the temperature and concentration
waves, the convection can increase. But this relative
displacement results in gradients of the alcohol con-
centration at the roll boundaries, and these gradients
produce changes in buoyancy which tend to translate
the roll pattern in the lateral direction. Whether such
a concentration wave, not precisely opposite in phase
with the temperature wave, is a self-consistent solu-
tion of the fluid equations and whether this is the ori-
gin of the traveling-wave states reported here awaits a
realistic and nonlinear calculation. The cessation of
time dependence at large r is probably due to the fact
that the convective flow homogenizes the fluid.

The role of the aspect ratio of the cell and the cell
walls in stabilizing or destabilizing the traveling-wave
and chaotic states has not been investigated. The fre-
quencies reported here are smaller by a factor of 2 or
more than those observed’ in larger—aspect-ratio con-
tainers of similar height, indicating that aspect ratio
may play a role in the dynamics.!* Unfortunately, the
flow patterns were not studied in the previous experi-
ments.>’

The relationship of our experiments to the predic-
tions® of spatially and temporally incoherent behavior
near the onset of convection is unclear. As predicted,
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we do observe chaos for ¢ large and negative. Howev-
er, the theory assumes a slow modulation, both in
space and time, of a flow pattern which is initially sta-
tionary in space but which oscillates with frequency
27 /7. In constrast, our experiments indicate that the
time dependence is due to a translation of the rolls.

We have observed traveling-wave states and states
chaotic in both space and time in convection in binary
fluid mixtures for which the separation parameter
¢ < 0. The flow pattern near the onset of convection
is chaotic. More generally, the traveling-wave states
described here provide evidence of a new and interest-
ing relationship between pattern selection and time
dependence in convection in binary fluid mixtures.!?
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