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~e present measurements of the dynamic behavior of macroscopic structures observed in a

periodically excited air jet. The transitional, weakly turbulent state is shown to be characterized by
a strange attractor with low dimensionality (v = 2.6), whereas motion of the turbulent flow is not
restricted to a low-dimensional attractor.
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Low-dimensional chaos in hydrodynamic systems
has been evidenced experimentally for Rayleigh-
Benard convection' and Couette-Taylor flow. 3

Chaotic dynamics was identified by the fractal dimen-
sion of the attractors, which therefore appear to be of
strange type.

Such most-studied systems have confined flows with
steady structures. 4 Ho~ever, the onset of chaos in
Rayleigh-Benard convection depends on the geometry
of the system; e.g. , in convection cells with small as-
pect ratios, routes to chaos may involve two or three
independent modes, 4 whereas in larger cells, quasi-
periodic regimes with up to five incommensurate fre-
quencies have been observed before chaos would set
in. ~ In this respect, free flows seem to exhibit more
general behavior: In the transition to turbulence, mac-
roscopic structures always break up into a great
number of eddies with large variations in orientation,
size, shape, and mean vorticity. Therefore, such flows

are also expected to be governed by a large effective
number of degrees of freedom.

We have studied the onset of chaos in a free flow,
i.e. , an isothermal air jet at low Reynolds number,
modulated by a longitudinal (along the flow axis)
sinusoidal excitation. The excitation induces a
periodic perturbation, with amplitude 2vrf'Q, on the
axial velocity. The control parameters are the ampli-
tude, A, and the frequency, fo, of the excitation, and
the Reynolds number, XR,. The diameter of the noz-
zle (D = 3 mm) was kept constant throughout the ex-
periments.

The unexcited jet was tested and found to be stable
over an axial distance —150D with a well-defined
Poiseuille profile at the exit (tube length l = SOD).
Flow visualization of the excited jet (seeded with oil
smoke) was performed with a stroboscoped laser-light
sheet shone through the flow axis. Figure 1 shows a
typical picture of the structures developed in the excit-

ZONE W

:]CM

ZONE B ZONE C

FlG. 1. Global structure of the excited jet (axially stroboscoped laser light sheet picture); Na, ——500; fo = 30 Hz; rms veloci-

ty ratio = 2/0. Zone A, laminar regime; zone B, transitional regime; zone C, turbulent regime.
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FIG. 4. (a) Dimensionality analysis for the transitional re-
gime (Na =500; fp=40 Hz; rms velocity ratio = 2.8%),
p = 2, d = 2 to 16; vertical bar indicates domain of dimen-
sionality evaluation. (b) Dimensionality vs log(R) . Notice
that for small 8, the limited number of points yields poor
average in the computation of C(R), which results in a wide
spread of the values of v.

sensitivity of the dimensionality to different values of
p. The results are given in Fig. 5(a). For the transi-
tional regime, the dimensionality has average value 2.6
with a variance of 0.14. The analysis of the turbulent-
regime data yields acceptable saturation of the slope v,
in the range defined by the bar as shown in Fig. 5(b)
for p = 2 (v, = 3.5).'2 However, the dimensionality is
found to be p dependent as v, increases from —2.5
for p = 1 to —7 for p = 20, with imbedding dimension
d =16 [Fig. 5(a)]. This observation could be inter-
preted as an indication of complex dynamics over a
large range of time scales. ' Furthermore, it follows
that the saturation of the slope with increasing dimen-
sion cannot be taken in general as a sufficient condi-
tion to assert the dimensionality (or even the ex-
istence) of a strange attractor. This point has also
been raised by Atten et al. ' in a recent analysis of
their study of electrohydrodynamic convection. '

As the analysis establishes unambiguously a fractal
dimension for the transitional regime (v, =2.6), the
local structure of the attractor was investigated by con-
structing the three-dimensional phase portrait u (t),
u (t + 3m ), u (t + 77 )." Figure 6 shows a projection of
the phase portrait and three Poincare sections,
wherefrom some degree of stretching can be noticed;
however, we did not detect, in any Poincare section,
evidence of a clearly folded structure. '

In summary, we have presented a study of the

FIG. 5. (a) p dependence of slope v, for transitional
(dots) and turbulent (triangles) regimes. (b) Dimensional
analysis for the turbulent regime (N(( = 500; fp

= 40 Hz;
rms velocity ratio = 3.3%), p =2, d = 2 to 16; vertical bar,
same as Fig. 4(a).

dynamical behavior of the macroscopic structures ob-
served in a nonconfined excited system undergoing
transition from laminar to turbulent. Dimensionality
analysis established that the transitional regime exhi-
bits chaotic dynamics characterized by a strange attrac-
tor with low dimensionality (v, =2.6). In the tur-
bulent regime, the dynamics could not be identified
unambiguously, as motion is probably not restricted to

u(t)

FIG. 6. Transitional regime. (a) Two-dimensional projec-
tion of phase portrait (u(t), u(t+3r), u(t+7~)) on
plane (u(t), +u (t +7m)) (3000 points plotted out 20480
data points). (b)—(d) Poincare sections constructed by in-
tersecting three-dimensional "positively" directed orbits
with planes (u (t + 3i ),u (t + 7v ) ) located at I, II, III in (a),
and labeled (u (t), u (t +4m) ) in (b)-(d).
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a low-dimensional attractor. This point is presently
under investigation.
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