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Ashkin-Teller and Gross-Neveu Models: New Relations and Results
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It is shown that (i) the N-component Ashkin-Teller model in d = 2 has continuous O(N) sym-
metry, (ii) its critical properties near the decoupled Ising transition are determined by the massive
Gross-Neveu [(PQ)2] model in general and the (integrable) massless version along a line, (iii) the
known results for the massless Gross-Neveu model imply that the first-order transition found as
N ~ persists down to N = 3 along this line, (iv) the supersymmetry of the N = 3 model implies
that the leading singularity of the free energy is zero along the first-order line, and (v) the N =4
model along this line decouples into two identical N = 2 models up to subleading corrections.

PACS numbers: 05.50.+q, 11.15.Ha, 12.35.Cn, 75.10.Hk

Over forty years ago Ashkin and Teller' introduced
their model for a lattice gas in d=2 which exhibited
Kramers-Wannier duality. It could also be viewed as a
model with two Ising spins coupled through their ener-
gy densities. We are concerned with the generalization
to the case with N Ising spins coupled in a symmetric
way as follows:

Z = Xexp[Kxs; s~+ g X„„(s,.s, )z],

where g is a sum over configurations of the N Ising
spins s (n = 1. . .N) at each site of a two-dimensional
square lattice, g„„is a sum over nearest-neighbor
pairs, and s s' stands for s s' summed over a. Re-
cently, Fradkin2 showed that as N ~ the Ising tran-
sition at g = 0, K = K'= [ln(1+ J2) ]/2 extends into a
first-order line for g ) 0 and a second-order line for
g (0. For N=2 the model is solved along a (self-
dual) line in the K-g plane by mapping it to the Baxter
model. 3 In addition, Grest and Widom~ have subject-
ed the small-N cases to a variety of numerical and
renormalization-group analyses. We are concerned

g=~gp, with r 0,
(2)

the transfer matrix takes on a simple form T
= exp( —7 H), with

here with establishing some exact results for finite N.
We turn to the first of the results quoted in the
abstract.

The model has O(N) symmetry. —Even though I wrote
Z in terms of formal O(N) dot products this does not
imply O(N) symmetry, since the group cannot act on s
which takes on discrete values. To get the desired
result one must rewrite Z in terms of s and the scalar
field @ used by Fradkin, write the Ising part of Z as a
Grassmann integral, and observe that the action is
O(N) symmetric. There is no problem with O(N) act-
ing on the Grassmann fields. I will present a related
proof in the transfer-matrix formalism. Consider a
model with couplings K, and K„in the two directions,
with g isotropic. In the v-continuum limit defined by

exp( —2K, ) = 7/2, K„=A. ~/2,

H= ——,
' X„{ot (n) +Xx r3 (n)r3 (n+ I ) + gp[X o 3 (n+ 1) ] ) .

We will not keep track of analytic c-numbers in H For each species let us introduce two Majorana (Hermitian)
Fermi operators as follows:

n —1

r2l/Jt(n) =
J

r (mt)r3(n +1), r2lyz(n) =,t]{rt(m)r2(n). (4)

I have not shown the Klein factors (which involve just products of rt s over all sites) that make different species
anticommute since they drop out of H. In terms of the fermion operators obeying

{ya(n) yp(m)I gmngap

H= —ix„pt(n) f (zn +1) + iA X„ft(n) $2(n)+gpX [2igt(n) Pz(n) l .

The free energy per site of the Ashkin-Teller model (ATM) is the ground-state energy per site of H.
The O(N) symmetry of the model follows (since group action can be unitarily implemented on the isovector

fields P) and must be unbroken as d = 2. Hereafter, the arrows on P will be dropped. The range of n will be clear
from the context.

The critical region We know that .w—hen gp=0, the above H has a vanishing gap and the ground-state energy
Ep(A. ) becomes singular at )i. = 1. In the vicinity of this point, i.e. , in the scaling region, one may construct a con-
tinuum theory which will capture the infrared behavior when the mass 0. One must simply choose A. to vary
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with the lattice spacing a ( = I/A) as A. (a) = 1+ma, or dX/d lna =P(A. ) = X to obtain an a-independent limit as
a 0. With gp small but nonzero, one finds

P(A. ) = ii. + 0(h. ,gp), P(gii) = 4(N —2)gp2/m + 0(gi3i ),

5
0 1

0.'=y
1 0y =/3=p

the continuum Hamiltonian is

which means that gp must vanish with a as 1/ln(1/a). In terms of

(X —1) 0 i
'Ir = ~, mp= —i 0' WW=WTpq,

(7)

(8)

dx{—'[O'T(np+ Pm )%"] —gp(++) ]. (9)

[In obtaining H, from H all higher derivatives have
been dropped. While these are irrelevant and can be
eliminated by momentum space renormalization, they
will modify mp and gp before leaving; i.e. ,

mpa =ii. —1+0(g), etc. However, this point can be
ignored unless one wants to transcribe the phase dia-
gram from the mp —

gp plane to the X-gp plane. ]
In the path-integral formalism H, would be associat-

ed with a Lagrangean density

I. = —,
' [e(ia —m, )~]+g, (e~)2, (10)

which, for gp ) 0, we recognize to be the L for the
O(N) Gross-Neveu model6 (GNM) with a (bare)
mass term. Under a chiral transformation, 'I? y +,
'I?W changes sign. The spectrum, and in particular the
ground-state energy, must be invariant under
P/p ~ —leap'.

Ep(mp, gp) = Ep( —mp, gp).

Thus if the Ising transition evolves into a single
transition line, it must be the line mp= 0. Of course,
the order of the transition and its very existence are

e% = CA cos[(4~)' 2~$],i+8% = —,
' (B„@)2,

+y„+= ~,„B„@/i~,
where c is a constant, to get

(13)

still open. Now notice that for large ~mp~, (0 P) will
be nonzero and oppose m in sign. Thus, 'P'If is the or-
der parameter and mp is the external field. On the line
mp=0, the derivative of Ep(mp, gp) with respect to
~mp~ is (0'%") in the field theory and is the internal
energy in the ATM. Therefore a nonzero (WW) in
the GNM, i.e. , the spontaneous breakdown of chiral
symmetry, corresponds to a first-order transition.
Gross and Neveu established that this happens for
N ~. I will now show that the first-order transition
persists at N=4. Later I will use known S-matrix
results for this model to argue that the first-order tran-
sition persists down to N =3. Of course, at N = 2 we
know that the transition is second order with continu-
ously varying exponents, a result that follows from the
mapping of the ATM to the Baxter line or the
equivalence of the N =2 GNM to the massless Thir-
ring model. 7

The case N=4. —We will now follow Witten and bo-
bosonize the model. First we form two Dirac fields
from the four Majorana fields,

'I?i= ( I?i+ 1 I?2)/W2, 'Ifii= ( I?3+ l'I?4)/4&, (12)

and bosonize the two Dirac fields by the usual rules,

I, = —,
' (t) y, )2+ —,'(t) @»)2+c'A'{cos[(4 )"'@]+cos[(4 )' '4 H'. (14)

p = [87r/(I+ 16gii/7r) ]' 2. (16)

We know from 5-matrix and Bethe A?isatz calcula--
tions' " that as P2 8m (recall gp tends to 0 with
a) the spectrum has only kinks, solitons s and antisoli-
tons s, and that they form an isospinor doublet. We
will now see how all this implies chiral-symmetry
breakdown.

Using now the following identity for a Dirac field,

(~qp)2 2(+y W)2 (2/~) (i) @)2

rescaling @ to @' so as to make the coefficient of the
free-field term —,', and redefining @+——(@,'+@,', )/ j2,
we get two sine-Gordon (SG) systems,

L = ( —,
' ) (8„@+)'+ A2c2gpcosPy'~ + (+ ——),

Consider Qi2 and Q34 which are the generators of
commuting O(4) rotations in the 1-2 and 3-4 planes.
They are given by the space integrals of 9'iy Wi and
'P»y 'I?». Under bosonization they become [@ (~)
—@ ( —~)]/Jvr, i =I or II. Given that @'+ and @'

change by +2?r/(8m )' 2 between x= —~ and +~
in the kink states, and the relation of these fields to @i
and @», we see that the latter change by +Jvr/2
Thus the solitons in $'+ and @' have charges
( + —,', + —,

' ). That is, they are isospinors. [In terms of
the generators g?i and gl of O(4) = SU(2)?i
CI SU(2)l given by Q?t/z gi2+ Q34 the kinks of

$+ have charges ( + —,', 0) while the kinks of @ have
charges (0, + —,

' ). lt is in this remarkable way that the
two decoupled SG equations at P =8vr maintain the

4S4
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O(4) symmetry. ] Let us now note that for the changes
in @,t» mentioned above +V = [cos [(47r ) 't2@, ]
+cos[(4vr)'t @ ]) changes sign between x= +~.
Thus isospinors are solitons connecting the two broken
symmetric vacua. Their existence which was shown
above, therefore, implies chiral-symmetry breaking.
Wittens has shown that for any N isospinors corre-
spond to kinks linking vacua with opposite values for
(w%).

The decoupling of the N = 4 GNM into two SG
equations translates into the decoupling of the N=4
ATM into two N = 2 ATM's. To show this one fer-
mionizes the SG equations back to massive N = 2
GNM's. One finds the following parameters A. 2 and g2
in the N= 2 models as gp 0:

li. 2
—1 = cgp, g2 = —&/32+ gp/2. (17)

Whereas the P function near g2 = 0 vanished identical-
ly, it is nonzero near —m./32 since gz is tied to gp. All
of this reflects the fact that the anomalous dimension
of cosP@ in the SG is 2 as P2 87r. Grest and Widom
raised this possibility, but for g, ( 0.

The case N=3.—At the Lagrangean level Witten has
shown that the model has an unexpected supersym-
metry, by bosonizing two of the three W's. I will argue
that chiral symmetry is broken while supersymmetry is
not. This implies that along the first-order line the
leading singularity in the free energy is 0 as gp tends to

(This point is quite subtle and will be discussed in a
longer version of this paper. ) The correlation length,
of course, diverges like exp(const/gp). There are oth-
er such examples, like the ones considered by
Domany'2 or Crombrugge and Rittenberg, '3 though
only in the latter is supersymmetry the obvious cause.

I will rely on the S-matrix calculations performed on
the GNM to establish the above results as well as to
argue that chiral symmetry is broken for all higher N.
Now the most satisfactory way to get the S matrix
would be to solve H by something like the Bethe An
satz and get the S matrix from the in and out states.
While all of this is possible for the SG or chiral Gross-
Neveu (GN) models'4 it has not been possible here.
There is an alternative originated by Zamolodchikov
and Zamolodchikov' and formalized by Karowski
et al. '5 for getting just the S matrix. (The Smatrix ob-
tained this way for the SG and chiral GN models
agrees with the Bethe-Ansatz method. We also saw
how well it did at P 87r in connection with the N = 4
case). In the GNM it goes as follows. One assumes
along with Zamolodchikov and Zamolodchikov (ZZ)'
that the model has an infinite number of conservation
laws. (After their work, Witten8 explicitly constructed
one of these nontrivial, local, conserved charges. I
have argued' that given one such charge, an infinite
number follow. ) One then assumes an isovector
multiplet of massive fermions. (That is, one assumes

chiral-symmetry breaking. ) One looks for an elastic
two-body S matrix with O(N) symmetry, crossing
symmetries, analyticity, unitarity, and factorizability
(the condition for the N-body S matrix to be the
product of two-body S matrices). One finds only two
choices: with and without bound states. One chooses
the former and assigns the other to the O(N) Heisen-
berg model. From the study of the isovector with its
bound states and so on, ZZ extract the following for-
mula for the complete mass spectrum at any N:

M„=2M sin(nm-/N —2),
n =1,2, . . . , (N —1)/2.

At each n there are O(N) antisymmetric tensors of
rank n, n —2, . . . , 1, or 0, the states of even (odd) n

being bosons (fermions). The last two are the isovec-
tor and scalar, respectively. In the SG case where such
a formula occurs [with m/N —2 replaced by (P2/16)/
(1 —P /8m. )] M is the kink mass and M„are bound-
state masses. Here too, M is the mass of the isospinor
kinks connecting vacua with opposite values of ('PW) .
This was established by Shankar and Witten'8 for even
N by considering the isospinor S matrix, looking for
the pole structure, and regaining Eq. (18). (For N =4
the full Smatrix was found. )

Having found an Smatrix this way one must ask if it
really is the S matrix for the GNM. Here is the evi-
dence: At large N the spectrum coincides with the
WKB result of Dashen, Hasslacher, and Neveu. '9 If
one follows their guess (based on a SG analogy) and
replaces N by N —2 in the large-N formulas one gets
Eq. (18). Next, ZZ have verified that the Smatrix ex-
panded out to lowest nontrivial order in 1/N agrees
with the field theory calculation in the same limit.
Coming down in N, I have shown2p by manipulating
the Lagrangean that at N = 8 the n = 1 isovector and
isospinor are degenerate as a result of a triality sym-
metry. This agrees with Eq. (18) at N = 8, n = 1. At
N =4, the S matrix found with Witten exhibits the
decoupling between the left and right isospinors that
we saw at the Lagrangean level. Also Mi, the mass of
the n =1 isovector which would be a right-left bound
state must now be 2M since they have decoupled. One
finds that this is so in Eq. (18). Thus we see the Sma-
trix is doing well down to N=4 and capturing any
peculiarities that arise at special values of N This con-
firms among other things chiral-symmetry breaking
which was assumed in the derivation.

In view of this overwhelming evidence we are
driven to believe that the mass formula, Eq. (18), is
correct for all N ) 2. [At N =2 it obviously shows a
pathology in the factor (N —2) '.] This implies that
supersymmetry is unbroken at N=3 since Eq. (18)
precludes a massless isoscalar Goldstone fermion that
would accompany symmetry breakdown. The sole
particles are the isospinors and their presence is a tes-
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ttmony to chiral-symmetry breakdown. (If we turn to
the SG model and recall the correspondence between
N and P that was mentioned earlier we see that N ) 4
corresponds to the region P2 & 47r where the s and s
attract and form bound states, while the range
4m & P2 & 8m containing only s and s corresponds to
2& N& 4.)

The mass formula tells us something about the very
S-matrix calculations that led to it. Notice that as we
lower N, the number of bound states decreases and at
N = 4 even the GN particle corresponding to I" is ab-
sent. If one blindly continues the isovector-isovector
S matrix to N = 3 one sees pathologies. If one knows
that Min Eq. (18) is the isospinor mass one sees that
the isovector has become unstable to decay into iso-
spinors. 2' This is what led Witten and myself to work
on the isospinor Smatrices for small N. The mass for-
mula is, however, stable under the exit of the isovec-
tor (or any higher-rank tensor when it becomes un-
stable) because it can be derived from the isospinors.
This is why we believe it at N = 3 though no one has
explicitly determined it at N = 3. It spells trouble only
at N = 2 where the very notion of an isospinor breaks
down. [I have pointed out in Ref. 17 the intimate con-
nection between this model at any N and the group
O(N). In particular, the decoupling at N=4 corre-
sponds to the factorization of 0 (4) into
SU(2) S SU(2) and the triality at N= 8 corresponds
to the triality symmetry of the O(8) Dynkin diagram. ]

To conclude, I have used the fact that in the vicinity
of the pure Ising transition the ATM may be related to
the massive Gross-Neveu model and that the tempera-
ture (measured from the pure Ising transition) and
energy-energy coupling of the former become the bare
mass and go of the latter. In the field theory the order
parameter is WW; the mass plays the role of the exter-
nal ordering field. Thus the transition is first order if
there is a nonzero WV in the massless GNM, i.e. ,
chiral-symmetry breaking. Since the massless GNM is
integrable, a lot is known about it. Using the available
information I have argued that the first-order transi-
tion seen at large N persists down to N =3 and that at
N=3 the leading term in the free energy vanishes
along the first-order line right up to the pure Ising

point. Conversely, it is satisfying to know where the
GNM comes from. 22
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