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Randomness and chaos in physical systems are ususally ultimately attributed to external noise.
But it is argued here that even without such random input, the intrinsic behavior of many nonlinear
systems can be computationally so complicated as to seem random in all practical experiments.
This effect is suggested as the basic origin of such phenomena as fluid turbulence.

PACS numbers: 05.45.+b, 02.90.+p, 03.40.Gc

There are many physical processes that seem ran-
dom or chaotic. They appear to follow no definite
rules, and to be governed merely by probabilities. But
all fundamental physical laws, at least outside of quan-
tum mechanics, are thought to be deterministic. So
how, then, is apparent randomness produced'7

One possibility is that its ultimate source is external
noise, often from a heat bath. When the evolution of
a system is unstable, so that perturbations grow, any
randomness introduced through initial and boundary
conditions is transmitted or amplified with time, and
eventually affects many components of the system. ' A
simple example of this "homoplectic" behavior occurs
in the shift mapping x, =2x, t modl. The time se-
quence of bins, say, above and below —,

' visited by x, is
a direct transcription of the binary-digit sequence of
the initial real number xo. So if this digit sequence is
random (as for most xo uniformly sampled in the unit
interval) then so will the time sequence be; unpredict-
able behavior arises from a sensitive dependence on
unknown features of initial conditions. 3 But if the ini-
tial condition is "simple, "

say a rational number with
a periodic digit sequence, then no randomness appears.

There are, however, systems which can also gen-
erate apparent randomness internally, without external
random input. Figure 1 shows an example, in which a
cellular automaton evolving from a simple initial state
produces a pattern so complicated that many features
of it seem random. Like the shift map, this cellular
automaton is homoplectic, and would yield random
behavior given random input. But unlike the shift
map, it can still produce random behavior even with
simple input. Systems which generate randomness in
this way will be called "autoplectic. "

In developing a mathematical definition of autoplec-
tic behavior, one must first discuss in what sense it is
"random. " Sequences are commonly considered ran-
dom if no patterns can be discerned in them. But
whether a pattern is found depends on how it is looked
for. Different degrees of randomness can be defined
in terms of the computational complexity of the pro-
cedures used.

The methods usually embodied in practical physics
experiments are computationally quite simple. 5 They
correspond to standard statistical tests for random-

ness, 6 such as relative frequencies of blocks of ele-
ments (dimensions and entropies), correlations, and
power spectra. (The mathematical properties of ergo-
dicity and mixing are related to tests of this kind. )
One characteristic of these tests is that the computa-
tion time they require increases asymptotically at most
like polynomial in the sequence length. 7 So if in fact
no polynomial-time procedure can detect patterns in a
sequence, then the sequence can be considered "effec-
tively random" for practical purposes.

Any patterns that are identified in a sequence can be
used to give a compressed specification for it. (Thus,
for example, Morse coding compresses English text by
exploiting the unequal frequencies of letters of the al-

phabet. ) The length of the shortest specification mea-
sures the "information content" of a sequence with
respect to a particular class of computations. (Stan-
dard Shannon information content for a stationary pro-
cess8 is associated with simple statistical computations
of block frequencies. ) Sequences are predictable only
to the extent that they are longer than their shortest
specification, and so contain information that can be
recognized as "redundant" or "overdetermined. "

Sequences generated by chaotic physical systems
often show some redundancy or determinism under
simple statistical procedures. (This happens whenever
measurements extract information faster than it can be
transferred from other parts of the system. ') But, typ-
ically, there remain compressed sequences in which no
patterns are seen.

A sequence can, in general, be specified by giving an
algorithm or computer program for constructing it.
The length of the smallest possible program measures
the "absolute" information content of the sequence. 9

For an "absolutely random" sequence the program
must essentially give each element explicitly, and so
be close in length to the sequence itself. But since no
computation can increase the absolute information
content of a closed system [except for O(logt) from
input of "clock pulses" ], physical processes presum-
ably cannot generate absolute randomness. ' Howev-
er, the numbers of possible sequences and programs
both increase exponentially with length, so that all but
an exponentially small fraction of arbitrarily chosen se-
quences must be absolutely random. Nevertheless, it
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is usually undecidable what the smallest program for
any particular sequence is, and thus whether the se-
quence is absolutely random. In general, each pro-
gram of progressively greater length must be tried, and
any one of them may run for an arbitrarily long time,
so that the question of whether it ever generates the
sequence may be formally undecidable.

Even if a sequence can ultimately be obtained from
a small specification or program, and so is not abso-
lutely random, it may nevertheless be effectively ran-
dom if no feasible computation can recover the pro-
gram. " The program can always be found by explicitly
trying each possible one in turn. '2 But the total
number of possible programs increases exponentially
with length, and so such an exhaustive search would
soon become infeasible. And if there is no better
method the sequence must be effectively random.

In general, one may define the "effective informa-
tion content" 0 of a sequence to be the length of the
shortest specification for it that can be found by a
feasible (say polynomial time) computation. A se-
quence can be considered "simple" if it has small 0.
0 (often normalized by sequence length) provides a
measurue of "complexity, " "effective randomness, "
or "computational unpredictability. "

Increasing 0 can be considered the defining charac-
teristic of autoplectic behavior. Examples such as Fig.
1 suggest that 0 can increase through polynomial-time
processes. The rule and initial seed have a short speci-
fication, with small 0. But one suspects that no poly-
nomial time computation can recover this specification
from the center vertical sequence produced, or can in
fact detect any pattern in it. ' The polynomial-time
process of cellular automaton evolution thus increases
0, and generates effective randomness. It is phe-
nomena of this kind that are the basis for cryptogra-

FIG. 1. Pattern generated by cellular automaton evolution
from a simple initial state. Site values 0 or l (represented by
white or black, respectively) are updated at each step accord-
ing to the rule a = a; ~ S (a,va, +~)( S denotes addition
modulo 2, and v Boolean disjunction). Despite the simplici-
ty of its specification, many features of the pattern (such as
the sequence of site values down the center column) appear
random.

phy, in which one strives to produce effectively ran-
dom sequences whose short "keys" cannot be found
by any practical cryptanalysis. '

The simplest mathematical and physical systems
(such as the shift mapping) can be decomposed into
essentially uncoupled components, and cannot in-
crease 0. Such systems are nevertheless often homo-
plectic, so that they transfer information, and with ran-
dom input show random behavior. But when their in-

put is simple (low 8), their behavior is corresponding-
ly simple, and is typically periodic. Of course, any sys-
tem with a fixed finite total number of degrees of free-
dom (such as a finite cellular automaton) must even-
tually become periodic. But the phenomena con-
sidered here occur on time scales much shorter than
such exponentially long recurrences.

Another class of systems widely investigated con-
sists of those with linear couplings between com-
ponents [such as a cellular automaton in which
a; '+' = (a; ' + a; ' ) mod2]. Given random input,
such systems can again yield random output, and are
thus homoplectic. But even with simple input, they
can produce sequences which pass some statistical tests
of randomness. Examples are the standard linear
congruence and linear-feedback shift-register (or finite
additive cellular automaton' ) systems used for pseu-
dorandom number generation in practical computer
programs. '

Characteristic of such systems is the generation of
self-similar patterns, containing sequences that are in-
variant under blocking or scaling transformations.
These sequences are almost periodic, but may contain
all possible blocks of elements with equal frequencies.
They can be considered as the outputs of finite-state
machines (generalized Markov processes) given the
digits of the numerical positions of each element as in-
put. '7 And although the sequences have certain sta-
tistical properties of randomness, their seeds can be
found by comparatively simply polynomial-time pro-
cedures. ' Such systems are thus not autoplectic (with
respect to polynomial-time computations).

Many nonlinear mathematical systems seem, how-
ever, to be autoplectic, since they generate sequences
in which no patterns have ever been found. An exam-
ple is the sequence of leading digits in the fractional
part of successive powers of —', ' (which corresponds
to a vertical column in a particular k = 6, r = 1 cellular
automaton with a single site seed).

Despite extensive empirical evidence, almost noth-
ing has, however, been proved about the randomness
of such sequences. It is nevertheless possible to con-
struct sequences that are strongly expected to be effec-
tively random. An example is the lowest-order bits
of x, = x, t mod(pq), where p and q are large
primes. 0 The problem of deducing the initial seed xo,
or of substantially compressing this sequence, is
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equivalent to the problem of factoring large integers,
which is widely conjectured to require more than poly-
nomial time. '

Standard statistical tests have also revealed no pat-
terns in the digit sequences of transcendental numbers
such as22 W2, e, and 7r (or continued-fraction expan-
sions of m or of most cubic irrational numbers). But
the polynomial-time procedure of squaring and com-
paring with an integer does reveal the digits of, say, J2
as nonrandom. Without knowing how the sequence
was generated, however, such a very special "statisti-
cal test" (or program) can probably only be found by
explicit enumeration of all exponentially many possi-
ble ones. And if a sequence passes all but perhaps ex-
ponentially few polynomial-time batteries of statistical
tests, it should probably be considered effectively ran-
dom in practice.

Within a set of homoplectic dynamical systems
(such as class 3 or 4 cellular automata) capable of
transmitting information, all but the simplest seem to
support sophisticated information processing, and are
thus expected to be autoplectic. In some cases (quite
probably including Fig. 1 ) the evolution of the sys-
tem represents a "complete" or "universal" computa-
tion, which, with appropriate initial conditions, can
mimic any other (polynomial-time) computation. 2' If
short specifications for sequences generated by any
one such computation could in general be found in
polynomial time, it would imply that all could, which is
widely conjectured to be impossible. (Such problems
are called NP-complete. ')

Many systems are expected to be computationally ir-
reducible, so that the outcome of their evolution can
be found essentially only by direct simulation, and no
computational short cuts are possible. 25 To predict the
future of these systems requires an almost complete
knowledge of their current state. And it seems likely
that this can be deduced from partial measurements
only by essentially testing all exponentially many pos-
sibilities. The evolution of computationally irreducible
systems should thus generically be autoplectic.

Autoplectic behavior is most clearly identified in
discrete systems such as cellular automata. Continu-
ous dynamical systems involve the idealization of real
numbers on which infinite-precision arithmetic opera-
tions are performed. For systems such as iterated
mappings of the interval there seems to be no robust
notion of "simple" initial conditions. (The number of
binary digits in images of, say, a dyadic rational grows
like p', where p is the highest power of x in the map. )
But in systems with many degrees of freedom,
described for example by partial differential equations,
autoplectism may be identified through discrete ap-
proximations.

Autoplectism is expected to be responsible for ap-
parent randomness in many physical systems. Some

features of turbulent fluid flow, 26 say in a jet ejected
from a nozzle, are undoubtedly determined by details
of initial or boundary conditions. But when the flow
continues to appear random far from the nozzle, one
suspects that other sources of effective information are
present. One possibility might be thermal fluctuations
or external noise, amplified by homoplectic processes. '

But viscous damping probably allows only sufficiently
large-scale perturbations to affect large-scale features
of the flow. (Apparently random behavior is found to
be almost exactly repeatable in some carefully con-
trolled experiments. ) Thus, it seems more likely
that the true origin of turbulence is an internal auto-
plectic process, somewhat like Fig. 1, operating on
large-scale features of the flow. Numerical experi-
ments certainly suggest that the Navier-Stokes equa-
tions can yield complicated behavior even with simple
initial conditions. 28 Autoplectic processes may also be
responsible for the widespread applicability of the
second law of thermodynamics.
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