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Cyclotron Motion in a Microwave Cavity: Possible Shifts of the Measured Electron g Factor
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The interaction of a bound electron with the radiation field produced by the image charges that
represent a surrounding cavity produces a shift in its orbital frequency and in its radiative decay
time. We calculate the frequency shift and the change in the damping constant for a cyclotron
motion at the midpoint of a lossy, cylindrical cavity. The frequency shift can easily be so large as to
have important consequences for the University of Washington g — 2 measurements.

PACS numbers: 12.20.—m, 14.60.Cd, 32.30.Bv

The effect of apparatus upon precision measure-
ments is a topic of much recent interest.!> A para-
digm is the University of Washington g—2 experi-
ment® with a single electron, where the Penning-trap
electrodes form a crude microwave cavity which slight-
ly shifts the cyclotron frequency and modifies the cy-
clotron decay rate. Such a change in the cyclotron
damping constant has been observed experimental-
ly.”8 The g factor is proportional to the ratio of the
free-space values of the spin and cyclotron frequen-
cies. Thus a cavity shift A of either frequency gives a
systematic error Ag/g=A/w,. The present experi-
mental precision® is upset if the cavity shift is larger
than A/w.=~5%10712, Such a shift would not be
made evident by comparison with the theoretical
value® since its uncertainty corresponds to Alw,
=~ 140x 10712, [Initial claims®3 that there are large
cavity-induced shifts of the spin frequency led to a
demonstration* that the exact apparatus of quantum
electrodynamics reduces to the classical theory with no
change in the spin frequency to within a high order of
accuracy (10~2%). The g factor is nonetheless affected
by the cavity, but by shifts in the cyclotron frequency
rather than in the spin frequency. We summarize here
our exact classical results!® for the changes in the cy-
clotron motion at the midpoint of a lossy, cylindrical
cavity whose symmetry axis is parallel to the magnetic
field.!! This calculable model should give a useful in-
dication of the size of the effects in the hyperbolic
electrodes used in the g — 2 experiments. We find that
the decay constant can be substantially altered and,
more importantly, that the shift in the cyclotron fre-
quency Aw, can be much larger than previously es-
timated,* > seriously impacting the measured g factor.
As a byproduct, we describe the shifts in the cyclotron
motion at the midplane between two infinite, parallel
plates. Our work, in conjunction with Ref. 4, can also
be generalized to treat cavity shifts on atomic systems
now being studied.!

With neglect of insignificant image magnetic forces,
the presence of a surrounding metallic cavity alters the
equation of motion to read

V—wXv+(e/mVV(t)++y.v
=(e/mE(r). 1)

Here E’(r) is the electric field at the position r(#) of
the electron which is produced by the effective image
charges that represent the cavity walls. It is the elec-
tric field acting on the particle omitting the trap field
[-VV(r)] and also excluding the self-field of the
particle itself. This self-field is accounted for by use of
the observed (free-space) electron mass m, and by em-
ployment of the free-space damping constant y,(w,.)
=4dew?/3mc®. It is convenient to split the field E’ into
transverse and longitudinal parts, E'=(E' + (DE’,
The longitudinal piece WE’ produces an insignificant
harmonic force that may be neglected.!?
The transverse electric field may be expressed as

ME(t,1)

5 3
- S;fdt’.sz';(t- tsr,r(t'))ev, (£)/ct. (2)

i=1

Here Dy (t—t;r,r’) is the retarded, transverse,
radiation-gauge Green’s-function alteration brought
about by the trap electrodes. Adding it to the free-
space Green’s function produces the full Green’s
function which obeys the relevant boundary conditions
on the cavity walls. Since the electron is confined to a
small region near the center of the trap, it suffices to
set r=0=r(¢) in Eq. (2). If we adopt complex coor-
dinates and take the Fourier transform according to
v(0) =v, (1) —iv, (1) ~ e ™ the equation of motion
(1) yields the condition

w—witiy/2= —erD,éx(w;0,0), 3)

where ro=e?/ mc? is the classical electron radius, and
D, (;0,0) is the Fourier transform of the Green’s-
function alteration in Eq. (2). The effect of the trap-
ping potential is to replace the cyclotron frequency w,
by the modified frequency!? w/ on the left-hand side
of Eq. (3).

Let us first ignore the renormalization problem so
that the Green’s-function correction D/ (w;0,0) in
Eq. (3) is replaced by the full Green’s function, and
the decay constant vy, is omitted. In this case we may
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express the Green’s function by a mode sum to obtain 3
, A 5 f ]

@@ wNw2+inN—w2' @) ;‘2_— .
Here wy is the eigenfrequency of the Nth mode and ’;‘ C B
'y is the decay constant of this mode, with Qy = 'r 3
=wp/T y the corresponding quality factor. Formula - _
(4) expresses the frequency shift of the cyclotron ol N T T T
motion, which is essentially harmonic, in terms of its 6 —— 11—
interaction with the infinite number of cavity modes of 3 L (b) h
the radiation field, each of whose amplitudes is a har- = 2L 8
monic oscillator. A simple dimensional argument % H B
shows that A} is of order ro/d*c?~ (ro/ dw}, where d x [ 7
is the characteristic size of the cavity. Therefore, away :} 2r 7
from any cavity resonance w = wy, there is a small fre- : - }
quency shift of the order of (v —w/)/w~ ro/d. How- 5 oL
ever, near a cavity resonance, the frequency shift L \'/ \/ . \-./ . \':/ \/ . \-./ \./

(from this one mode) can be as large as (w—w.)/ 0 ! e 3 4 5 6 7
o~ *+(rg/d)(wy/T )= % (r¢/d) Qy, which is much E=wl/m=2L/X\

larger. This frequency. shift disappears exactly on reso- FIG. 1. (a) The decay constant for a charged particle
nance, but then there is a large change in the cyclotron moving in the midplane between two perfect conducting
decay constant of order (r¢/d) Oyw ~ v, Q. planes. (b) Frequency shift for 8/ L =2x 1073,

In the limit of an infinitely large cavity, the ima-
ginary part of the right-hand side of Eq. (4) must
reproduce the free-space decay constant — iy,/2. But in this limit, the real part of the right-hand side of Eq. (4) is
infinite since it contains the reactive effect of the self-field of the electron. Hence the formal mode sum in Eq. (4)
must be renormalized by subtracting out the real part of the free-space limit. Since this is a delicate operation, we
use instead the previous formula (3), which expresses the (complex) frequency shift in terms of the alteration
D/, (w;0,0) of the Green’s function brought about by the presence of the cavity.

We take approximate account of dissipation by replacing the individual cavity widths I" 5 with an average value I'.
Referring to the mode sum (4), we see that since I'> << @ ,%, this is tantamount to replacing the frequency w by the
complex number w + —;—il". To determine unambiguously the renormalized alteration D, (w;0,0), we note that the
limit in which the cavity radius R is taken to infinity yields a geometry with two parallel, infinite conducting planes
a distance 2L apart. Thus we express the Green’s function as the sum of the Green’s function for the parallel-
plate problem plus the solution to the homogeneous wave equation which corrects for the presence of the cylindri-
cal wall. This gives

w—w,=—5il(0)+R(w)=—Fiy.(0) +0[Zp(w+3iT)+Zs(w++il)], (5

where 2 p is the parallel-plate contribution to Eq. (3), and I is the correction due to the cylindrical side of the cav-
ity. The imaginary part /(w) is the cavity-modified cyclotron decay rate at frequency w, and the real part R (w)
the cavity shift of the cyclotron frequency. Since these changes are very small, o can be replaced by w. on the
right-hand side of Eq. (5). Since the Green’s function for the two-parallel-plate geometry can be expressed as an
infinite sum of image contributions, the removal of the self-field term is now trivial: One simply omits the direct
contribution from the sum.

Using the method of images we obtain

To ; o - ic c? c?
So(w)=—In(1+ e2iellc)y _ 2 (—1)H p2inwl/c — + . 6
Pres T L ,21 ) 2n’Le  4n’L%?)  4n’L0? ©

The cavity dissipation in this parallel-plate case can be modeled by writing I' = w8/ L, where & is the skin depth of
the conducting plates. It is convenient to describe the frequency by the dimensionless variable é =wL/mc=2L/\,
which is the (fractional) number of wavelengths that fit between the plates. The decay constant Ip(w) for perfect-
ly conducting plates (I'=0) given by Eq. (6) is plotted in Fig. 1(a). With £ < 3, less than half a wavelength fits
between the plates. In this case, electromagnetic waves cannot propagate between the plates, the electron cannot
radiate, and /p(w)=0. The decay constant Ip(w) jumps discontinuously as ¢ passes through thresholds for pro-
pagating waves at odd half-integers. As & becomes large there is no obstacle to radiation, and Ip(w) approaches
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the free-space value .. The effect of nonvanishing dissipation is to smooth the sharp discontinuities and to pro-
duce a small contribution below the first threshold ¢ = 4. In Fig. 1(b) we plot Rp(w), taking 8/L =2x 1073, This
frequency shift vanishes as w — oo. The large peaks appear when ¢ is an odd half-integer because here the retarda-
tion phase exactly cancels the alternating signs of the image charges, and the resultant infinite-image sum would be
the divergent sum of 1/# if it were not for the damping resulting from cavity dissipation, which produces instead a
large logarithm.

The alteration of the Green’s function brought about the presence of the circular side of radius R can be ex-
pressed in terms of an infinite sum over the axial standing waves which fit between the two end-cap planes. The
wave numbers of the waves which do not vanish at the midplane location of the electron are given by
ko= (n++)mw/L, where n=0,1,2,. ... With o below the first axial threshold, £ < +, the radial waves are ex-
ponentially damped with the damping constant u,= (k2 — %/ c2)"2. In terms of this decomposition, the cavity-
side addition to the complex frequency shift (5) is given by

ro & [ Ki(uaR) ki [ Ki(p,R) K1<k,.R>” o

= — — + —
Zs(w) L ne0 Il'('u,"R) w? 11(/-&,,R) ]1(k,,R)

where the prime denotes a derivative. The first ratio of Bessel functions is the TE contribution; the terms in the
large parentheses are the TM contribution. When o is near the nth threshold, u, becomes small, and the nth
term in the sum (7) has a large logarithmic contribution that cancels the large logarithm in the parallel-plate term.
As o passes the threshold, u, becomes a negative imaginary number. In the limit of vanishing dissipation (I'=0),
the imaginary part of the Bessel function ratios cancels the imaginary part of the parallel-plate term. Past a thresh-
old the Bessel functions in the denominator can van-

ish, producing poles corresponding to the normal

modes of the cavity. The replacement w — w +%i1“ 100
changes these poles into Lorentzian forms of width I'. 75+

A3
The sum in Eq. (7) converges very rapidly: For large 50} Q=10 (@)
n, up~k,~nw/L, and it is exponentially damped. o5l J
A ]
_25_ -
_50— -~

Thus the sum is easily calculated on a digital comput-
er. Adding the result to the previous parallel-plate
contribution gives the complete shift of Eq. (5).

-(L/rp) Aw/w

Experiments are generally performed in the region -75+ -
3.5<¢<4.5, which we examine in detail for a -100 I TR E— S E E— '
cylindrical cavity with R/L = 1.5 to model the present- 25 ~ - | ; I . : . :
ly employed hyperbolic traps that have ring/end-cap 20

distance ratio of +/2. Our results are shown in Fig. 2,
using Q=1000. We see that the damping constant 15
I(w) varies from 0.06y.(w) to 2ly.(w). A Q of
about 1000 is required to make possible the decrease
in the damping constant by the factor 10 which has
been observed.®! To set the scale for the frequency
shifts, we note that in the traps ro/L =8x10713,
while the current experimental precision is equivalent
to a shift in the cyclotron frequency given by
Aw/w,~5%10712. We see from the figure that, on
this scale, very large shifts occur in the vicinity of the 0.5
normal-mode frequencies, shifts as large as Aw./w, -
=90x 10~ !2, For the most part the shifts are on the -
order of Aw,/w.=8x10"12 in the regions between ot
the resonances where the damping constant is small. FT—T T 1
In view of the uncertainties in the theoretical value of — L L L ! 1 ‘
the anomaly, a shift as large as Aw,/w, =140x 10712
would not be revealed by comparison of the experi- 3

mental and theoretical results for the anomaly. We FIG. 2. Cavity effects for R/L =1.5 and QO =1000. The
conclude that an experimental search for this sys- ticks denote the positions of the TE and TM modes. (a)
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tematic effect should be made to confirm the present
value of the g factor of the electron.
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Frequency shift. (b) Decay constant. (c) Magnified section
of the smaller values of the decay constant.
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