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We derive the dispersion relation for a new gapless Goldstone mode in the fractional quantum
Hall effect of a multicomponent electron gas. We expect these modes to be important for some of
the observed filling factors (e.g., v=1, 31—, —;-) in multivalley semiconductors.
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Predictions for the ground state of the fractional In this Letter we consider a multivalley (or
quantum Hall effect (FQHE) and the associated ele- equivalently multicomponent) semiconductor with fiull
mentary excitations for a wide range of filling factors symmetry between the valleys. For a system which
v, of the form v=p/q, have been almost exclusively favors a valley polarized ground state (VPGS), we
confined to single-valley semiconductors.!~> In such present a closed-form expression for the correspond-
systems recent calculations show the existence of an ing gapless Goldstone modes (GM) and discuss their
energy gap in the excitation spectrum which explains important possible implications. We also present nu-
the fractional quantum Hall effect.'* Interest in a merical studies for the two-dimensional multicom-
multicomponent extension of these predictions has ponent plasma (2DMCP) and for the two-dimensional
been largely applied to spin-up and spin-down elec- multicomponent charge-density wave (2DMCDW)
trons in the lowest Landau level.>~” Of course, the  Which support a preference for a VPGS atv = 1 and +
Zeeman splitting will always destroy the perfect sym- in the inversion layer of Si.
metry between the two components.’ The multivalley Hamiltonian in the lowest Landau

| level is, in its second quantized form,?
H= (1/2L2)2111 v(q1) 3 5 [pa(q)pp(—a1) —exp(—qf/2)p, (0) ]+ Hsp, (1)

where v(q;) = e22m/elg,, |= (cki/eH)"? (all lengths are scaled by /), and L? is the area of the inversion layer.
pa(q1) is the Fourier transform of the density operator ., (P, (1), i.e.,

pala) = [ &r " WL (e (1), @

where « is the valley index of the field operators nl;l(r),x[;a(r) in the lowest Landau level.’ Finally Hgp is a
symmetry-breaking term given by

Hsy=lim [ @ (y/2 W (D1 (1 =0T (D (D], 3)
o

(Physically we think of y as an infinitesimal strain which breaks the symmetry between the two valleys.) We next
define the propagator K,g given by

Kog(r—r',t)= i(O[lbl(r,t)\ljﬁ(r,t)w;(r',O)([;a(r’,O)0> (0 —d;;(r’, O)llla(l",O)llll(l‘,t)lllp(l’,t)g > (010) 4)
(a#B)
[6>()=1fort>0and 6> (£)=0for < 0;0<(1)=1—0> (1] and proceed to show that it contains the gapless

GM discussed above and to derive their dispersion relation.
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It is difficult to work with Eq. (4) in its present second quantized form since it does not explicitly exploit the
analytical properties of the lowest Landau level. We note, however, that Egs. (1)-(4) can be rigorously mapped to
a spin system. Equation (4) can then be written identically as

KaB(r—r',t)=i(O[S_(r,t)|n) (n|S:(r,000> (=S, (r,0)|n){(n|S_(rt)]|6>(D10), (52)
where
S_(rnn=3,0_;(08(r—r}(n) and S, =5I, (5b)

with o ; ;=3 (o, Fio,;) the usual Pauli matrices. Now the crucial point is that Egs. (5) and (4) are equivalent
only if the states |n) are all within the first Landau level. In addition the time dependence of S_ (r,¢) and S, (r,1),
which is governed by H of Eq. (1), must also be projected to the lowest Landau level. This can be expeditiously
enforced by the projection-operator technique.'® We can then rewrite Eqs. (1)-(4) as

A= -2% 3,0 (@) Up(a) 15(~ 1) —exp(— /D I5(0) 1+ lim yo5(0), (6a)
9
ﬁ(ql)=Ejexp(iqla/aZj)exp(iq,*Zj/2), (6b)
S_(9)=3,0_ ;expligd/dZ;) exp(ig*Z;/2), (6¢)
and the Fourier transform of Eq. (5a) is
K_ ,(gD= i(0[S_(g.08:(—¢ 00> (D—5,(—¢0)S_(g,00>()]0). (6d)

In Egs. (6a)-(6d) both Z; and ¢ are complex numbers,'? i.e., Z;=x;+ iy; and g = g, + ig,, and I is_the identity
operator in spin space. Taking several time derivatives of Eq. (6d) and using the commutations with H to evaluate
these time derivatives, we get

FI(Q) 1_72((1) i

Jim K (a) = i | S ™ Tomy)? ~ (aoy)? 7-7: (@) (7a)
where

Fi(@)=0[S_(9S,(—=@)—S,(—q@)S_(g)10), (7b)

Fy(@)=(0l7_(9)S4+ (=) =S, (—9)T_(g)]10), (7¢)

X7_3,(q.0= (OLT_(g.0T+ (=)0~ (=T, (—q)J_(g,06> (10), (7d)
and

J_(g0=15_(q0,HI. (7e)

The GM w(g) can now be identified from the small-g behavior of K_ 4 (g, @),

qli_l.nogi_r'noK_,J,(q,w)zZ#((g:—;—. (8)
Comparison with Eq. (7a) yields

w(q)=Ji_£110[F2(q)+iX7_17+(q,7)]/F1(q), (9a)

for the dispersion of the GM at small ¢.!! We can evaluate Eqs. (7b) and (7¢) in closed form for a fully VPGS.
We get

Fi(q)=—Ne~ 472, (9b)
and after a somewhat lengthy calculation,
Fy(q) = (N/2LY) e~ 972 3.4, v (g {lexp((g*q1—q1q)/2) — 11
+ lexp(—(g"q1—q1'q)/2) =11} (S(q1) — 1), (9¢)
where S (q;) is the structure factor for the single-valley FQHE.

434



VOLUME 55, NUMBER 4 PHYSICAL REVIEW LETTERS 22 JULY 1985

Equations (9a)-(9c) constitute our main results. 057

Clearly at small ¢ the GM goes like ¢2 provided!?
limg—olim,—oX5_3 (g,v)=q¢**< o

For finite ¢,!' Eq. (9¢) is evaluated numerically with 0.3
the use for S(g;) of the Laughlin-proposed! ground @
state (or equivalently the two-dimensional one- 3 0z
component plasma, 2DOCP), and the results are ’
displayed in Fig. 1; we return to these results shortly.

To observe experimentally the effect of such gapless 0.1
excitations on the FQHE it remains to determine
whether and when a VPGS is preferable over a nonpo- 0.0 == i ; . : .
larized ground state (NPGS). We clearly cannot cover 0.0 0.5 10 L5 2.0 .25
all choices of polarizations, ground-state candidates, or q
filling factors v. Suggestions for commensurate FIG. 1. The gapless Goldstone modes w(q) for two dif-
ground states of higher ratios of p/gq, in a single-valley ferent filling factors v; v = for the solid curve and v =+
system,? are particularly difficult to extend to multival- for the dashed curve. w(g) is measured in units of ¢%/€/and
leys. Here we examine only a few of the lower and q is scaled by /.

best established filling-factor ratios v. For the ground

state of the FQHE we take two standard candidates, the 2DCDWS3 and the Laughlin! 2DOCP, and extend them to
multivalley systems. The 2DMCDW are the exact extension of Yoshioka and Lee Hartree-Fock calculations® to
the multivalley Hamiltonian of Eq. (1). In Table I the first row corresponds to the fully VPGS.!3 The second row
corresponds to a NPGS.!* The third row corresponds to the extension of the Laughlin! ground state ¢ to a NPGS
as suggested by Halperin,’ i.e.,

= Hi<j (Z=Z)" i<« (Zl“Zk)mHi,k (z,~Zo"II, e-lzi|2/4Hk 3—|Zk|2/4’ (10)

with m odd and n even, where Z; and Zk correspond to the positions of the particles in the two valleys. The state
maps into a 2DMCP with a commensuration energy at v =2/(m + n). We solve the 2DMCP, using the extension
of the hypernetted-chain technique!® (including bridge-function corrections for correlation effects at short dis-
tances'®) to two components, for m=3, n=2 (v=2%),and m=5, n=2 (or v=2%). We also include the results
without bridge functions in parentheses. To assess the accuracy of these new multivalley results we also list in row
4 the fully VPGS at v= 1 and +. The starred numbers are the Monte Carlo results,!® which as seen are basically
identical to ours. Note that a Laughlin-type NPGS [Eq. (10)] cannot exist at v = ;— or %.16 From Table I we con-
clude that at v=+ and + the fully VPGS of Laughlin is the lowest of the three. This conclusion is further con-
firmed by essentially exact Monte Carlo calculations of the 2DOCP.1> Atv = % and + Table I predicts a Laughlin-
type NPGS. It is rewarding to note that similar conclusions were reached in a small-cluster calculation with no ini-
tial prejudice as to the form of the ground state.”

TABLE 1. Energies per particle (in units of e%/€!) for four different ground states of a

two-component electron gas in the lowest Landau level at filling factors v = -;—, 31—, %, and
2

7.

=1 v—1 v—1 =3
Fully
VPGS CDW —0.3885 —0.3220 —0.4123 —0.3685
NPGS CDW (—0.2204) (—0.1636) (—=0.2491) (—0.2271)
—0.3823 —0.3195 —0.4013 —0.3644
NPGS Does not Does not (—0.434) (-0.370)
Laughlin state exist exist —0.438 —0.372
Fully VPGS —0.4100* —0.3277* Does not Does not
Laughlin state (—0.406) (—0.321) exist exist
—0.409 —0.327
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ground state.”

We finally turn to the implication of the above
results. First the polarized nature of the ground state
at v = % and % implies the existence of gapless GM
(of Fig. 1) in a multivalley semiconductor like Si at
these filling ratios.!” These excitations, according to
Eq. (4), correspond to removal of an electron from
one valley and addition of it to the other followed by
complicated coherent scattering between them. It then
follows, from Eq. (9), that a direct measurement of
these excitations could shed important additional in-
sight on the structure factor S(gq,) for this fascinating
quantum fluid. More important, however, is the obvi-
ous dissipation channel such GM provide.!® If indeed
the FQHE hinges on a gap in the excitation spectrum
then we make the prediction that unlike in GaAs, the
favorite filling factor » = 4 should not show the usual
strong features in the Hall conductance of a multival-
ley semiconductor. We expect such measurements to
become available in the near future.
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