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The origin of band gaps and characters of the
valence and conduction electron states in 3d
transition-metal compounds have been controversial
topics for the last forty years. ' 3 Band-structure calcu-
lations in which exchange and correlation effects are
replaced by effective one-particle potentials often
predict metallic ground states or gaps which are an or-
der of magnitude smaller than experimentally ob-
served. In the Mott-Hubbard theory' it is proposed
that charge fluctuations of the type d;"dg d;" 'dg+'
(where i and j label transition-metal sites) which in-
volve the d-d Coulomb and exchange interactions ( U)
are strongly suppressed because of the high energies
involved (7—10 eV for the late transition metals2 and
also for the high-spin Mn + and Fe + compounds be-
cause of the exchange ). This idea forms the basis for
an understanding of the low —energy-scale properties of
the magnetic insulators in terms of spin-only Hamil-
tonians, the success of which confirms that charge
fluctuations must be high —energy-scale properties.
This separation into low (spin only) and high (charge
fluctuation) energy scales also forms the basis for the
very successful Anderson theory of superexchange5 as
well as the Goodenough-Kanamori rules. 6

There are, however, several problems with the
Mott-Hubbard theory in its simplest form. First it im-
plies that the band gap is a d-d gap which is correct for
Ti and V compounds. For the Co, Ni, and Cu com-
pounds, however, the gap seems to be directly related
to the electronegativity of the anion and therefore
probably is of a charge-transfer type. 7 8 Also, it is dif-
ficult to understand that NiS, CuS, and CoS 9 are me-
tallic since that would require a reduction of U from
7—10 eV in the oxides2 to 1—2 eV in the sulfides. As
already indicated, there is another charge-fluctuation
energy which does not involve U, namely the charge
transfer (5) d,

" d;"+'L, where L denotes a hole in
the anion valence band. 6 is directly related to the
electronegativity of the anion and the Madelung po-
tential, both of which tend to stabilize an ionic ground
state and an inert-gas valence configuration of the
anion. The model Hamiltonian that incorporates both

5 and Uis the Anderson Hamiltonian commonly used
to describe rare-earth materials, but not commonly
used for transition-metal compounds. Another charge
fluctuation frequency proposed in the past'o involves
the d" d" '4s excitation. New information, howev-
er, shows that this is relatively unimportant especially
for late-transition-metal compounds because of the
high energy of the d" ' state. We will therefore
neglect this, upon which the Anderson impurity prob-
lem becomes exactly solvable for insulators.

In this paper we describe the dependence of the con-
ductivity gap and the nature of electron and hole states
on U and 6 for transition-metal compounds. We show
that the gap can be of either d-1 or charge-transfer
character depending on the relative size of U and 6
and that the gap can go to zero even if Uis large. The
model described solves all of the qualitative problems
mentioned above.

A frequently used approximation for the insulating
transition-metal compounds is to treat a central cation
plus its nearest-neighbor anions as a cluster with as
Ansatz the purely ionic configuration. " Hybridiza-
tion and covalency as well as the d-d Coulomb interac-
tions are then taken into account by a configuration-
interaction approach considering configurations of the
type d", d" +'L, d"+ I,, etc. A better approximation is
to include the anion valence-band width and to treat
the transition metal as an impurity in the same way as
the cluster; but now the L can delocalize and gets a
band-wave-vector label which must be summed over. '

In the limit of zero bandwidth or if the gap is large our
theory converges to the cluster-theory result. An "ex-
act" calculation would include also the translational
symmetry of the transition-metal ions; but since the
d-band dispersional widths are usually very small
( ( 0.5 eV even in single-particle calculations3 '3), we
expect that the neglect of this will only cause small er-
rors in calculated band gaps and will not change the
physics unless perhaps if the band gaps also turn out to
be very small. The theory presented is therefore based
on the assumption that a broken translational sym-
metry calculation is, as far as the transition-metal ions
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are concerned, a good approximation for transition-
metal compounds. '4 In this limit the problem reduces
to that of an Anderson impurity which we solve using
recently developed many-body theory. '5

The procedure is as follows. We first calculate the
ground-state energy (EG) of a transition-metal (d")
impurity hybridizing with the anion valence band.
This involves an n-electron or (10—n)-hole calcula-
tion, taking into account the d-d Coulomb and ex-
change interactions. In this way we assure charge neu-
trality of the system without making assumptions con-
cerning the actual nature of the electrons and holes in
the ground state. To find the true ground state this
many-body calculation must be done for every irre-
ducible representation of the point group spanned by n
d electrons. '6 The full calculation then also yields the
full excitation spectrum of the system including the
ligand and crystal-field splittings. We then repeat the
procedure for the states with one electron removed
(ionized states) and obtain again the lowest-energy
ionized state (EI" ') of the (n —1)-electron system
and also for the electron-affinity states containing
n+1 electrons of which the lowest energy is Eq+'
The conductivity gap is given by the energy required
for creation of an excitation in the solid in which the
electron and hole are spatially well separated and
therefore uncorrelated. ' In terms of the above this is
equivalent to

E = EJ" + Eg+ —2EG.SaP

Note that the excitonic states are included in the n-

electron calculation.
In Fig. l we show the energy-level diagram to

demonstrate the principle of the calculations and to de-
fine the parameters used. '8 Hybridization together
with correlation causes a rather complex picture con-
sisting of bound states and band states for each of the
configurations, and so we show only the hybridization
shifts of the lowest-energy states which determine the
band gap. The rather complicated total eigenvalue
spectrum of the (n —1)- and the (n+1)-particle
states, together with the fractional parentages of the
ground state, determine the photoemission (UPS) and
inverse-photoemission spectra, which have been calcu-
lated but will be presented elsewhere. '

The parameters of the calculation are the charge-
transfer energy (b, ), the d-d Coulomb interaction (U)
which includes exchange, the anion valence band
which was approximated by a semiellipse with a width
( W) equal to 3 eV typical for halides, '3 and the hy-
bridization interaction ( T) which was assumed to be k
independent (1 ~ T ~ 2 for the compounds of in-
terest " ). In the calculation, care was taken to in-
clude the degeneracies of the various states in the spir-
it of a I/Nf calculation. ' We calculated the n-electron
or (10—n) -hole, the ( n —1)-electron, and the
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FIG. 1. Diagram showing the various states and parame-
ters used in the theory.

(n+1)-electron Green's functions and determined
the energy and character of the lowest-energy states. 22

From Fig. 1 we see that the band gap is given by

gn —1 gn+1 (2)

where 5"are the hybridization shifts which, because of
correlation, depend on x. These hybridization shifts,
although exactly solvable in the Anderson impurity
problem for this model, require solution of rather
lengthy transcendental equations which will be
described elsewhere. '9 To see how W, T, b, , and U
enter the problem we reproduce an analytical equation
for 6" with n = 8 as in NiO, which is a good approxi-
mation to the exact numerical result:

(
w/2 T'p(e) de

QN
~ —w&2 g~ g ~ 21 (g~ 2g U ~)

'

where p (e) is the ligand hole density of states,
T = (d (H(d L), and

I'(~) = t'w/2 T2p(g) d
W/2 z

This and similar relations for 5" ' and 5"+' can be ob-
tained by procedures described by Gunnarson and
Schonhammer. '5 We note that Fig. 1 is drawn for
U ) A. For U & 5 the lowest-energy state of the
(n —1)-electron system would be d" ' rather than
d"L, so that 6 should be replaced by U in Eq. (2),
from which we can already see that different band-gap
characters are expected for U )6 and U & A.

We have done the above calculations for n =9, 8,
7, 1, 2, and 3 corresponding to Cu2+, Ni2+, Co2+,
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Ti3+, V3+, and Cr3+, respectively. Although the de-
tails depend weakly on n the general trend and basic
physics is independent of n.

In Fig. 2 we show the calculated band gap as a func-
tion of 5 for various values of U. The actual calcula-
tion is for n = 8 corresponding to Ni2+ as in NiO, NiS,
and Ni dihalides. We see that for U & 5 (right-hand
side) the band gap is proportional to Uand we are in a
Mott-Hubbard region. On the other hand, for U & 6
(converging lines) the gap is proportional to b, and is
of a charge-transfer nature. Also we see that for
U=O, or equivalently if correlation and exchange is
treated as an effective one-particle potential as in band
theory, Eg,~=O for all 5 and the system is metallic.
Also for U large but 5 & 8'/2 we obtain a metallic
ground state.

In Fig. 3 we have summarized the above in a kind of
phase diagram. The heavy solid line is where the band
gap is 0.5 T. To the left and below this line the transla-
tion symmetry of the cations which we neglected will

be important and if so the system may be metallic.
The dashed line is where Eg,~

= 0 in our calculation.
We now discuss briefly the various regions marked

in Fig. 3.
(A) Mott Hubbard in-sulators: E~,~~ U; both holes

and electrons move in d bands and are heavy. Exam-
ples are V203, Ti203, Cr203 and their halides.

(B) Charge transfer s-emieonduetors: Eg,~~ 5 (and
proportional to the electronegativity of the anion);
holes are light (anion valence band) and electrons are
heavy (d bands). Examples are CuC12, CuBr2, CuO,
NiC12, NiBr2, and NiI2.

(AB) Intermediate region bounded by two curves
which show the appearance of bound states determin-
ing the lowest-energy (n —1)-electron states. Holes
of intermediate mass, heavy electrons. Examples are

NiQ, NiF2, CuF2.
(C) d ban-d metals: Both holes and electrons are

heavy. Examples are the high-temperature phases of
V203, Ti203, TiO, and Cr02.

(D) "p" type -metals: Holes in the anion valence
band (light holes). Examples are CuS, CuSe, and
NiSe. The pyrites (NiS2, etc.) would belong to this
class but the holes in the anion valence bands are ac-
commodated in antibonding orbitals of sulfur pairs,
forming a band gap. Also CuI2, if it existed, would
belong here but apparently the material would rather
form CuI and I than have holes in the iodine Sp
band. "

(CD+C'D) Intermediate region in which there are
strong fluctuations between the states d", d" +'L, d"L,
and d" +' since a11 have considerable weight close to
the Fermi level. For U large this could describe NiS
and for U small it describes semimetallic TiS& and
TiSe2. In the region C'D the calculated gap is unphysi-
cally negative although small ( & 0.1T). The negative
sign may indicate that a nonuniform ground-state
charge distribution has a lower energy than the as-
sumed uniform charge density although, as remarked
above, the neglect of transition-metal translational

symmetry makes the theory questionable in this re-
gion.

In conclusion, we have presented a theory which
describes a large variety of transition-metal com-
pounds. We have shown that a large d dCoulomb -in-
teraction is necessary but not sufficient to obtain a
large band gap. We have also indicated why the re-
placement of exchange and correlation effects by an
effective one-particle potential leads to anomalously
small gaps or even metallic systems.

We have shown that for U & 5, as expected for the
heavier transition metals, the gap is of charge-transfer
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FIG. 2. The calculated band gap as a function of 6 for
various values of Uall in units of T. For the materials con-
sidered 1.0 eV ( T ( 1.5 eV and 8' = 3 T.

FIG. 3. A phase diagram exhibiting the various regions
discussed in the text. The heavy solid line is the serni-
conductor-metal separation line.
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type while for U ( b, , as for the light-transition met-
als, the gap is of a d-d type. Since the electronegativity
differences between cation and anion determine the
charge-transfer energy, the band gap for large U is
roughly proportional to the electronegativity of the
anion. So it is quite natural to expect the gap to close
for the sulfides of Ni and Cu even though the d-d
Coulomb interactions remain large. In the limit of
large band gaps (Es,~ ) W/2) our theory converges to
the cluster-theory results.

In future papers we will present the details of the
theory and use it to describe the various forms of spec-
troscopy of transition-metal compounds. These exper-
iments can be used to determine the parameters of the
theory.
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