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Line Shifts in Electron Channeling Radiation from Lattice Vibrations
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A density-matrix formulation of the dynamical theory of spectral shifts from correlated lattice vi-
brations in electron channeled radiation is presented. For lower-energy channeling, in which two
bound levels exist in the channeling potential, positive shifts can be demonstrated. In the case of
higher-energy channeling, where the number of bound levels increases, reduced positive shifts and
negative shifts are shown. The theory suggests a novel method for experimentally determining a
transverse, vibration correlation length in crystals.

PACS numbers: 61.80.Mk, 63.90.+t, 78.70.—g, 78.90.+t

Relativistic electrons propagating through crystal ax-
ial or planar channels may occupy bound energy states
in the transverse direction. Spontaneous transitions
between these discrete, energy eigenstates give rise to
narrow-width electromagnetic radiation that is strongly
peaked in the forward direction. ' '4 The x-ray spec-
trum observed has consistently displayed a relatively
simple structure to which a quantum mechanical
analysis is well suited. Spectral linewidths due to lat-
tice vibrations have been treated through a quantal,
sudden-collision approximation' or by considering
the imaginary part of an optical potential. ' These
studies have taken into account thermal scattering by
uncorrelated individual atoms in order to explain the
experimental observations of the linewidths. In
planar channeling, satisfactory agreement has been ob-
tained in cases where the vibrations of different atoms
are uncorrelated. 4 For axial channeling or for planar
channeling close to a major crystal axis in the plane,
the correlation of thermal scattering from neighboring
atoms can be particularly important and must be in-
cluded in the analysis of linewidths. 4 8 9 Recent exper-
imental and theoretical studies have indicated reason-
able agreement on the location of spectral peaks. ' '4

However, a consistent pattern of small spectral shifts
has been seen with negative shifts occurring for axial
channeling, " and both positive and negative shifts
for planar channeling (17, 31, and 54 MeV) in LiF, 5

diamond, and silicon. 3 " The standard remedy of
varying the thermal vibrational amplitudes that appear
in the thermally adjusted channel potentials was judged
as unsatisfactory for always some energies. s 6 An al-
ternative theory that can account for these irregulari-
ties is desired. In this Letter, we use a density-matrix
approach to show that the presence of spectral shifts
may be partially related to an average, interstate
dynamical effect due to the interaction of channeled
electrons with correlated lattice vibrations. This treat-
ment, which includes correlations of vibrations, pro-
vides a possible explanation for the spectral line shifts
for both axial channeling and planar channeling close
to a major axis in the plane. It is found that lower-
energy channeling, in which two bound levels exist in
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the channeling potential, can have a positively shifted
spectral line. At higher channeling energies the bound
system becomes multilevel and reduced positive shifts
and negative shifts are indeed predicted. It must be
emphasized that the spectral properties derived here
are a consequence of our having used a dynamical
description of the electron-lattice vibration interaction
in lieu of a thermal modification of the static channel-
ing potential.

The transverse Hamiltonian for axial or planar chan-
neling is obtained by first considering the crystal po-
tential V(r, z ) = gt V, (R —R, —Ut), where V, (R) is
the atomic potential, Ut is the thermal displacement of
the atom from site Rt, R= (r,z), and r= (xy). Here
the coordinate z is chosen to lie along the channeling
direction, while for planar channeling x (y) is normal
(parallel) to the channeling plane. Upon averaging of
the local oscillations in V(r, z) along the z axis and ex-
pression of z as a timelike parameter t = z/v (where v

is the electron channeling velocity), the transverse
Hamiltonian for a channeled electron bound in a po-
tential V(r, t) can be written as H, = H, ' + H, ',
where H, =Hf+ VT(r), H," = V(r, t) —VT(r), Hf
is the free-particle Hamiltonian, and the channeling
potential is VT(r) = (( V(r, t))),. The double angular
brackets denote an ensemble average over Ut and the
subscript z denotes an average over the z dependence.
In case of planar channeling Vr(r) VT(x) after
averaging also over the y dependence. As considered
by Andersen et al. ,

4 H, ' can be approximated as

H, ' = V(r, ) —(( V(r, t) ) ) = 5 V(r, t).
In a representation where H, to~ is diagonal, and for the
lower bound levels, the matrix Hamiltonian simply be-
comes HI 6 5,"—tA,J, where 6' ~ 5~ HJ A Q J= 5 V)J, 5 VJ = (i'(5 V~j), the transverse subscript is
dropped, and zero superscripts indicate laboratory-
frame quantities. For planar channeling e,o includes
the free states with different y momenta. Noting that
((A,J) ) =0, we next introduce a spatial correlation
along the z direction in the laboratory frame at a given
time, "

((0 (z') 0 (z"))) = (([II (0)]z))F(~z' —z"
~ jL )
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where F denotes a general correlation function which is a decreasing function of the argument iz' —z" i/L,
F(0) = 1. Here Lo is defined as a transverse-vibration correlation length and the various correlations in vibrationsP

0are taken up to several lattice spacings. Here, we remark that a further ensemble average of HJ at this stage would
only reproduce the previous technique of thermally modifying the channel potential and the results derived
therefrom. "

Upon Lorentz transformation in the beam direction, the Hamiltonian in the particle frame is given by'
HJ =yHJo=e, 5;J —h A,J, where y is the relativistic factor (1 —v /c ) '~ . In this frame, the transverse electron
wave function may be written as a complete sum over eigenstates, iW) = g; C, ii ), whereupon the density-matrix
elements p;, are given by C, C,'. These elements evolve in time according to itdp;, /dt = (Hp —pH);, . Defining
ai;= e, /ii, ai;J =ai; —a~j, using the definition of HJ, and separating p;J(t) into slowly and rapidly varying factors,
p;,'(t) exp( —iai;, t), we find that p;,

' satisfies

pJ(t) = p (0)+i X& Ct' [&;k(t')pk (t')exp(iaikt') —p k(t') &k (t')exp(ioik t')]. (1)

If we iterate and perform an ensemble average Eq. (1) becomes

((p,,'(t))) = ((p;,'(0))) —X Jt Ct'J~ dt" F(it' t" i/r )—
k, k

{[A,„„„((P„',j(t"))) exP(;kt'+ „„.t") —A,„„(j(P„'„,(t")) ) exP(;kt'+ '
„,. t")]

—[~I
k kj((p„' „(t"))) e xp( iaikjt' +iaik, t") —II„,kkj((p, '„,(t")) ) exp(i0JkJ t'+ iaJ„,„t")]j,

where Qij~kt=y ((5 V~A &qt) )/t, ~~ = L~/c, L~ = L~//y, and

((& (t') &(t")p'(t')) ) =—((&(t') &(t")) ((p'(t')) ).

(2)

Dropping the double angular brackets, taking the time derivative of Eq. (2), and noting that the dominant contri-
bution to the t" integration occurs for t" —t, we find

p,, (t) = —ioi—,,p,, (t) —X
'""' + '"'

p,,(t)+ X II',
~ki ~jk

+
1'

Ik
„,p„„.(t),

k j
where p;J(t) has been transformed back to p;, (t),5„„ is the Kronecker 5 and arises from a time"u -"k'J
average over the oscillatory terms,

( ice,, ) ' =—[„drF( i
~ i/r~) exp( —i aiiJ r ) ],,

and the subscript t denotes a time average over oscilla-
tory terms. Alternatively, im;~ may be represented in
the form i 0J;J = i n; 0J;J +p J/r~. For some physical
cases of interest toi;, is of the order of a few electron-
volts or less and it is a good approximation to take
(ai;Jr~) (( 1. In such a case n;J and p;J are of the or-
der of 1 for genera/ Fand they are nearly insensitive to
the quantum indices i,j. For an exponential correla-
tion function n,J =p,J =1. For i = j, the population in
state ii ), p;;, satisfies

Cpii/Ct = Xk (pii Pkk)/~ik(1) ~

~here ~;k '(1) —= A,kp;k~~ ', and

~ik 2+ikki/[(~ik~ik) + (Pik/rp)

Physically, ~;k(1) represents the decay time of p;; from
lattice vibrations when a population imbalance
between states ii ) and i k) occurs.

For electron channeling the transition frequencies

dp,J (t)/ct

(4)= —i (aJ,J+ b, ,J)p,, (t) pJ(t)/r, J(2), —

where tA; and ii r; '(2) correspond to energy shifts
and widths, respectively. Making a Lorentz transfor-
mation back to the laboratory frame via the relations

0 0 0 0 0
iJ iJ iJ 'J ' iJ P 'j P ' iJ y iJ ' iJ

=yw, ~, and 3;~=A;~, and Doppler correcting by the
factor 2y2 for the photon shifts and widths, we obtain

1 0 0~ij 2 k (~ik~ik~ik+ ~kj ~kj ~jk) ~

I,, —= 2y2/r o(2) = y' gk (p,kA, ok+ pjkA, ok)/r 0, (6)

where overbars denote Doppler-corrected frequencies
in the laboratory frame, and zero superscripts again in-
dicate laboratory-frame quantities. The sums in Eqs.
(5) and (6) are over all intermediate (bound and free)
states k and are due to thermal transitions starting at
states I and j.

For planar channeling close to a major crystal axis in

407

! are nondegenerate, i.e., ~;k&co.k for all distinct transi-

tions. Eq. (3) then for i~j assumes the suggestive
form
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the plane, the y separation of neighboring atoms is
small and highly correlated. One can then use in Eqs.
(5) and (6) the completeness of the continuum set of
y-motion wave functions to obtain for the photon
shifts and widths the same form. However, the matrix
elements in Eqs. (5) and (6) will now involve x-
motion wave functions only with the y dependence in
0 t2Jit averaged. For two bound levels in the channeling
potential the photon shift and width in the case of axial
or planar channeling follow directly from Eqs. (5) and
(6):

~10 ~ 10 ~10
I'to A topPtpc

0 0
QJ 10 03 10Lp

(7)

where a strictly positive shift is to be noted. Although
this feature qualitatively agrees with some lower-
energy planar-channeling experimental results, s" fu-
ture experiments should investigate this effect as a
function of beam incidence relative to a major axis in

I

the plane. In the case of LiF, for example, one can
obtain from Eq. (7) a relative shift Ato/t0to of a few
percent when q =—ct~oL~/Ptoao —4, where ao is the lat-
tice constant and the experimental values of
I to/tdto —20O/0, it t0to —20 keV are taken from Ref. 5.
For planar channeling close to a crystal axis or axial
channeling the correlation length L~~ can be several
lattice spacings and q —4. A more definitive com-
parison necessarily entails a highly model-specific
analysis of L~~, n;J, and P;J, that is appropriate for fur-
ther studies. From Eq. (7) it is seen that the ratio of
the shift to width is directly related to the microscopic
quantity L~~. As this correlation length in the trans-
verse direction depends only on the channeling direc-
tion, a straightforward way of measuring L~~ as a func-
tion of crystal orientation is indicated. Finally, a direct
measure of the strength of the potential, i.e. , through
210, is provided through measurement of the spectral
shift.

For multiple bound levels in the channeling poten-
tial the shift in Eq. (5) may be explicitly written as

5 ~ ~j+1 j +0J+1,J
~j+1,j

t~j+2J+ l~j+ 2j+1 + ~jj—l~j,j—1 j

20)j~t ~

where terms proportional to A;oi for ~i
—j ~

~2 are
negligibly small and have been ignored, and n;, and P;,
are taken as unity for simplicity. It is noticed that rela-
tive to the two-bound-state case, the shifts are signifi-
cantly reduced and may even become negative. This
qualitatively corresponds to the higher-energy electron
planar-channeling results where the bound system is
multilevel and negative shifts are generally seen. 3 s "
With use of the thermally averaged exponential chan-
nel potential VT(x) of Pantell and Swent, ' for exam-
ple, and with the approximation 0,2, = (y V&,'/il )
&& ((U2)), where U„ is the atomic thermal displace-
ment and V» = (i ~ dVT(x)/dx ~ j), a quantitative
analysis shows that A~, + t/A~ t ~ behaves as
(co&J+t/co~ ti)z. When this relation is used in Eq.
(8), for LiF, 5 diamond, and silicon, '4'8 negative
shifts are indeed seen to occur for all transitions except
for the 1 0 case. When this relation is also used in
Eq. (6) for the spectral widths, a general decrease in
width with decreasing transition frequency is verified.

This density-matrix formulation of electron channel-
ing in the presence of correlated lattice vibrations has
simultaneously provided a general description of line
shifts, widths, and population decay rates due to inter-
state transitions. In particular, we have shown the
possibility of positive shifts in the two-bound-level
case that can exist in lower-energy electron channel-
ing. Further increasing of the channeling electron en-
ergy gives rise to multiple bound levels where reduced
positive shifts or negative shifts were found. Whereas
general agreement between theoretically predicted and
observed spectral maxima was previously found with

use of a thermally averaged, static, channeling poten-
tial, an understanding of these finer features, e.g. , pos-
itive and negative shifts, may be partially furthered by
a dynamical description.

A detailed phonon representation of lattice vibra-
tions and their effect on line shifts and widths is in
preparation. Additional refinement of the line shifts
requires an analysis of the dynamic effects of the
bound- to free-state transitions. Work on this area
within the context of both electron and positron chan-
neling is in progress.
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States Department of Energy.
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