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Oblique-Roll Electrohydrodynamic Instability in Nematics
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(Received 22 March 1985)

A three-dimensional analysis of the electrohydrodynamic instability in a planar oriented nematic
liquid crystal with stress-free boundary conditions shows that for appropriate, realistic parameters
of materials like MBBA and PAA the instability sets in for a periodic roll structure that is oblique
with respect to the undisturbed director n. By a change in the frequency and/or application of a
magnetic field, a continuous transition from perpendicular to oblique rolls can be induced. We
analyze the mechanism, discuss the possible influence of nonlinearities, and compare with experi-
ments.

PACS numbers: 61.30.Gd, 05.70.Ln, 47.20. +m, 47.65.+a

When a low-frequency alternating voltage is applied
across a thin layer of nematic liquid crystal having neg-
ative (or slightly positive) dielectric anisotropy, suffi-
cient (ionic) conductivity, and uniform orientation of
the director n in the plane of the layer, an electrohy-
drodynamic instability (EHI) which leads to a periodic
pattern of convection rolls occurs (for reviews see
Gossens and Blinov'2). In this system the director,
which is oriented at the upper and lower plate by ap-
propriate boundary conditions, defines a preferred axis
within the plane of the layer. The periodic structure is
expected to orient itself in a definite way with respect
to n. All theoretical investigations in the past have
started from the assumption that the rolls are perpen-
dicular to the undisturbed director (two-dimensional
Williams domains), and this structure was reported
from experiments. '2 Recently, however, Ribotta,
Joets, and Lei observed a direct transition into a state
with oblique rolls below a critical frequency co, . Above
co, the first transition to perpendicular rolls was fol-
lowed by a transition to an undulated structure. Fur-
ther increase of voltage led to oblique rolls.

In the well-known Rayleigh-Benard instability of
simple fluids4 the orientation of the rolls is, apart from
lateral boundary effects, arbitrary. The situation in the
EHI of neumatic liquid crystals is similar to Rayleigh-
Benard convection in a conducting fluid in the pres-
ence of a horizontal magnetic field, where convection
sets in with the rolls along the magnetic field. s When
the layer is in addition rotating, the convection rolls
make an acute angle with the direction of a sufficiently
large magnetic field. 6 Actually our problem is also
similar to Taylor vortex flow, especially in the small-
gap limit (preferred axis = cylinder axis). There, spiral
vortex structures (the analog of oblique rolls) may oc-
cur for counter-rotating cylinders. 7

Here we present a three-dimensional linear analysis
of the EHI which determines the structure at threshold
up to degeneracies. Consider a nematic slab [Fig.
1(a)] with the undistorted director n in the x direction
and applied voltage V(t) between the plates. We start
from the general electrohydrodynamic equations, ' in-
troduce spherical polar coordinates for the director
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FIG. l. (a) Sketch of the periodic convection structure.

(b) The pitchfork bifurcation in the p, /p, -coro plane for
MBBA. (c),(d) The dependence of the critical frequency cu,
on e, and o. ~~/o. t.

. 2

n= (cosHcostlt, cos0sintlt, sin0), and linearize around
the undistorted state (see, e.g. , Appendix A of
Manneville and Dubois-Violette'o). By elimination of
the pressure and the charge density one obtains six
coupled linear partial differential equations for the
velocity components v;, i =1,2, 3, the potential p of
the induced electric fields, and the angles 0 and tlt of
the director distortion.

We consider an alternating voltage V = ( Vo/
J2) coscot. At threshold (marginal-stability point) we
expect that nontrivial co-periodic solutions exist
(steady bifurcation or exchange of stability). All quan-
tities may then be expanded in a Fourier series. In the
low-frequency or conduction regime" a meaningful
approximation is obtained by keeping only the time-
independent components (averages) for the director
and velocities, and the fundamental component

402 1985 The American Physical Society



VOLUME 55, NUMBER 4 PHYSICAL REVIEW LETTERS 22 JULY 1985

g = @1COScut+ 42Sincot fOr the pOtential. " '4 ThiS ap-
proximation is for conductivities o. of the nematic ma-
terial and layer thicknesses dwith o-d & 10 ' 0 ' m
valid over most of the conduction regime. ' ' The
resulting equations become fully algebraic with the An
satz

Ux y
= A 1 2 slIlz cos ( qx + py ),
A 3 cosz sin(qx+ py),

/1 2= A4 3cosz sin(qx+ py),

~ = A 6 cosz cos (qx +py ),

Q = A7sinz sin(qx+ py).

Here all lengths are measured in units of 7r/d so that

~z~ ~ m/2. Clearly v„, u~, and P are not zero at the
boundaries, and the boundary conditions indeed corre-
spond to an unrealistic stress-free surface. This defi-
ciency of the theory could in principle be fixed by
superposing degenerate harmonic modes as first done
by Penz and Ford, 9 or by choosing the Ansatz (1) only
for the x and y directions and integrating numerically
with respect to z. In both cases no analytic expression
for the threshold can be obtained, and we therefore
continue with the solutions (1). As in the two-dimen-
sional case this simplification preserves all qualitative
features. 9'3'4

The resulting system of homogeneous linear equa-
tions for the A; is solvable only if the determinant van-
ishes and this gives the following expression for the
threshold voltage Vo as a function of q, p, co, material
parameters, and applied magnetic fields:

) [K2 p (kll k22) /K1]2

e, ep[q (o,e~D/e,-o.~S —1)M+D '(q +P)(DS '+c0 r )]
where

K, =k»p +k22+k33q +d X pp(Hx Hy)j'~', K2=k»+k22p +k33q'+d X,pp(H„—H, )/7r',

S=q o ii/cri+P, D=q equi/e +1P, P= 1+p, r=rpD/S, rp=cptj /01,2 2

~—[p [(~3p ~2q )P1 —~3P2](kll k22)/K1+ [ ~3P1p +(~ — q')P ]]/(P P P'p')—
P1=P ——,cc4q2, P=g2P+ (qt+q2+nt)q, P2=

& ~4q +Pp +'cltq, P3=P+
& ~4q p +'qtq

(2)

(3)

(5)

The ViSCOSitieS cct, . . . , a6 and qt = (n4+n5 —a2)/2,
7)2 (cc3 + cc4 + cc6 )/2 aS Well aS the elaStiCitieS k1 1,k22,
k33 are defined as usual (see, e.g. , Refs. 1 and 2), and
e =a~~ —e~, cr =o.

~~

—o-1 are the aniSOtrOpieS Of the
dielectric constant and of the conductivity (the dielec-
tric and conductivity tensors are, respectively,
e;k = e „5;k+e n; nk and o.;k = cr1 5;k+ cr n; nk) Equa-.
tion (2) was derived for the case where at most one of
the components of the magnetic field H= (H„,H~, H, )
is nonzero. For p = 0 the results for the two-
dimensional analysis are recovered. "

In the relevant parameter range the curve Vp (q,
p=0) has a minimum V, 2 (two-dimensional thresh-
old) at the critical wave number q, corresponding to
perpendicular rolls. V, 2 is a minimum with respect to
variations of p as long as c) Vp/c) p & 0 at Iq~ =q„
p=p, =0. Otherwise there exists a lower threshold
Vc3 for ~p ~

=p, & 0. Inserting standard values for the
material parameters of N- [p-methoxybenzylidine] -p-

butylaniline (MBBA) (see Table I)2 except for e„
which we allow to vary keeping the angular average
~ = (2~„+e

~~
)/3 = 4.92 fixed, one finds p, = 0 for

~, ( —0.226 and p, & 0 for —0.226 ( e, & 0.38 at
c0=0 and H=O. For e, & 0.38 the threshold for the
eleCtriC FreederiCkSZ tranSitiOn VF =7r k11/6 &p [q = p
= 0 in Eq. (2)1 becomes lower.

The oblique-roll structure can always be suppressed

by an increase of the frequency c0 beyond a critical
value c0, . In Fig. 1(b) the values for p, /q, are plotted
as a function of c0rp [see Eq. (3)] for e = —0.2 (Ri-
botta, Joets, and Lei3 quote this value for their experi-
ments on MBBA). At c0, there is the typical pitchfork
bifurcation which we always find for the transitions to
the oblique-roll state. The vertical slope of p, (c0) at
~, has apparently not been observed. ' Possibly lateral
boundaries disturb the effect slightly above threshold.
Our theory gives c0, /2vr = 5.25 s ' for e, = —0.2,
o.~=1.2X10 8 0 ' m ' (cT~ was estimated by fit-
ting the theoretical cutoff frequency to the experi-
ment3) and standard values of MBBA. The discrepan-
cy with the measured value c0, /2m = 40 s ' is due ei-
ther to the approximations made in our theory (mainly
unrealistic boundary conditions) or to deviations of
the material constants from the standard values used.
In Figs. 1(c) and 1(d) the variation of co, with e, and
with o-~~/o-1 are shown. These parameters can be
varied by addition of appropriate guest molecules to
the host material. Our results are consistent with the
fact that in most experiments on MBBA perpendicular
rolls are found (usually e, = —0.5).

If e, is chosen not too far below —0.226, the transi-
tion from perpendicular to oblique rolls can be induced
by varying any one of the material parameters. In
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TABLE I. In the second column standard values for material parameters of MBBA, as in
Ref. 2 (except for e, ), are given (elasticities in units 10 N and viscosities in units
10 3 kg m ' s '). At those values the transition to perpendicular rolls takes place at
Vo = V 2

= 5.67 V and critical wave number q, = 1.250 (i0 = 0; = 0 throughout). When any
one of the parameters is varied alone a transition to oblique rolls occurs at the value in the
third column In. the fourth and fifth columns the corresponding changes of the threshold
voltage and critical wave number are given.

Material
parameters

Standard
values

Transition
values

(Change of
V, 2) x10

(Change of
q, ) x 103

k22

k33

0.'2
O.'3

O.'4

0.'5
0!6
~II

6 ' 1

4.0
7.25
6.5

—77.5
—1.2
83.0
46.0

—35.0
4.72

—0.3
1.5

6.3
3.9
8,06
9.5

—83.9
—12.9

77.7
55.8

—27.4
6.32

—0.226
1.55

3.7
0.0

20.1

3.8
—20.7

26.1
—14.3

15.9
7.8

—87.1
—14.5
—25

6.3
0.0

—17.4
6.8

—15.5
88.6

—17.5
3.0

21.4
—45.8
—45.9
—21

Table I the transition values for each parameter are
given (all others kept fixed) for e, = —0.3 and co =0.
%e have also included the change in the threshold vol-
tage and the change in q, . The material constants for
p, p'-azoxydianisole (PAA) are such that the oblique
rolls should occur in a large range of e, .

Although it is not easy to understand all the trends
in terms of simple physical ideas, we provide some dis-
cussion of various influences. The Carr-Helfrich
mechanism, ' ' which drives the "anomalous" align-
ment of the director in the perpendicular-roll instabili-
ty, is also responsible for the transition to oblique
rolls. Thus spatial variations of the director in the
presence of an external electric field lead to a charge
density

vr Voep q2+ Pq(0g6 i6g j)rr0%2d rri~ q + iri P
(6)

(independent of Q). Equation (6) follows from charge
conservation "7,(o-,„E„)+ p = 0 (E= total electric
field) and Coulomb's law V, (e,„Ek)=p for small,
periodic variations of 0 in the static limit. The electric
field in the charged fluid now initiates hydrodynamic
flow which in turn acts back on the director. This
feedback is positive for o.,~~ —e,o-~ ) 0, and so spa-
tial variations of n (and all other quantities) appear
spontaneously above threshold. Equation (6) shows
that for a-i~/a-i ) I and given amplitude of 0, the
charge density increases with increasing p . This pro-
vides the driving force for the oblique-roll instability.
Clearly large values of o.

ii
/o. i favor the effect.

The buildup of the charge distribution is governed
by the charge relaxation time ~, and so the dominant
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effect of c0 is to increase the threshold Vo with 0~'r'.
Since r increases with p, oblique rolls are for increas-
ing co more and more suppressed.

For q )) I spatial variations in the z direction be-
come negligible. Then a one-dimensional description
of the Williams domains, which has been used exten-
sively in the past, becomes possible. "' ' In this ap-
proximation the oblique-roll instability does not occur,
because q2 and p2 enter in many places in Eqs. (2) —(5)
additively, so that for decreasing q nonzero values of
p2 become more favorable (keeping all other quantities
fixed). Actually this behavior is quite general and is
related to the mechanism leading to the zigzag instabil-
ity in Rayleigh-Benard convection. 4

When e, increases, both V, 2 and q, decrease (the
latter is very pronounced; see Table I), because the
homogeneous stabilizing effect of the electric field is
reduced. The positive effect of increasing e, on the
oblique-roll structure is a result of the decreasing qz,
whereas the direct effect of increasing e„keeping q
fixed, is in fact opposite.

A magnetic field H„ in the x direction raises V, 2 and

q, and suppresses the oblique rolls, whereas the oppo-
site is true for a field H, in the z direction (for
X, ) 0). Both effects are similar to the effect of
changing e, and are again explained by the variation of
q . A finite magnetic field H~ destabilizes the director
in the x-z plane and therefore favors oblique rolls.

In the oblique-roll state one has a twist deformation
in contrast to perpendicular rolls. Therefore a suffi-
ciently small twist elasticity k22 is essential for oblique
rolls. Both splay and bend deformation are relieved by
the twisting, so that large values of k~~ and k33 relative
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to ic22 are favorable for oblique rolls.
The viscosities act in different ways on the instabili-

ty. It is useful to recall the role of the shear viscosities
ri t Q 2 7I 3 cx4 /2 and o. t, and of the rotational viscosi-
ties yt 2=o.3+F2 (see, e.g. , Refs. 1 and 18), which
couple the hydrodynamic motion with the viscous
torque 1 on the director. For perpendicular rolls only
rit, rl2, and nt describe the friction of the hydrodynam-
ic flow. Increasing qt, ri2, and nt with respect to rl3
favors flow out of the x-z plane, and therefore oblique
rolls. This explains the influences of nt, n2, n4, ns,
and o.6 as shown in Table I. Decreasing o.2 or o.3 in-
creases I „which promotes orientation of the director
out of the x-z plane (for n2 this is consistent with the
influence through rit). Decreasing nz (or ct3) in-
creases (or decreases) I y, which decreases (or in-
creases) &,2.

Let us now discuss the influence of nonlinearities
above threshold. Their immediate effect is to fix the
amplitude of the structure and to select among linearly
degenerate structures. Besides the oblique rolls, which
we chose in Eq. (1), one could also have rectangular
cells, which are obtained as a superposition of rolls
with positive and negative p. These features can be
reproduced by simple two-dimensional anisotropic
models. ' In addition one finds in the nonlinear re-
gime of such models undulated rolls, as observed by
Ribotta, Joets, and Lei.

We hope that our results will stimulate more experi-
ments in this field and lead to more quantitative com-
parisons. We are now calculating the threshold curves
for rigid boundary conditions and with corrections to
the frequency expansion. Moreover, we plan to inves-
tigate the nonlinear behavior slightly above threshold
including wavelength selection properties as done for
other systems. 2o 2'
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