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QCD at Large W, Skyrme or the Bag'?
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A framework for extracting the low-energy dynamics of pseudoscalar mesons from QCD at large
N is developed and, to leading order in the decoupling of heavy rnesons, the pure pseudoscalar
theory is calculated truncated to four derivatives. The soliton is found not to be manifestly stabi-
lized by the four-derivative terms. Under a plausible assumption about the classical solution for the
scalar meson field, a natural realization of the previously proposed topological soliton bag model is
obtained.
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tial, an invariant function of quark bilinears whose
minimization would lead in principle to determination
of the ground state. While the expression for the po-
tential is not explicit enough to enable one to demon-
strate spontaneous breakdown of the chiral symmetry
without further assumptions, assuming that the chiral
symmetry is indeed broken, we obtain an interesting
expression for the order parameter (qq), linking it to
the chiral-symmetry —breaking scale and the constitu-
tent quark mass.

Consider QCD in the limit of a large number of
colors. We will assume that the theory confines at ar-
bitrary large N. In the absence of the explicit quark-
mass term the theory has global U(NF) S U(NF)
which, below some scale A, is spontaneously broken
down to diagonal U(NF). Consider the following
quark bilinear:

@j(x)= qtt (x) qL,, (x).
The ground state of the theory below the chiral-
symmetry —breaking scale will be characterized by
operator $~ being frozen to its large expectation value.
The lowest-energy states above the ground state are
Goldstone bosons of broken chiral symmetry-
pseudoscalar mesons. Fluctuations of @1'(x) around
its expectation value (o.) have correct quantum
numbers to be identified as scalar and pseudoscalar
mesons. It is natural, therefore, to define what is
meant by scalar and pseudoscalar mesons by enforcing
the following identification:

e(x) = V (x)cr(x) V . (I)
o-(x) is the Hermitian matrix of scalar mesons while
the pseudoscalar field matrix is U= Vx V=expi(2/
F )II(c) and transforms according to a nonlinear real-
ization of SU(Nz) S SU(N~) in a standard way. The
partition function for QCD with the measure appropri-
ately extended to include integration over collective
fields defined above is

There is little doubt presently that QCD is indeed a
fundamental theory of hadrons. Yet, as far as low-
energy hadron dynamics is concerned, the evidence
for this is mainly qualitative and comes largely from
considerations of QCD in the limit of a large number
of colors. '~ At the same time, it is well known that
the low-energy interactions of hadrons are very suc-
cessfully described by phenomenological chiral
Lagrangians. One of them, the old Skyrme model, '
has been recently reviewed s from a modern point of
view. It was shown that a topological soliton, known
to appear in this model, has indeed the qualitative
properties of the baryons as originally conjectured, but
quantitative agreement is not quite satisfactory. 6 The
appearance of a solitonic baryon fits very nicely into a
previously conjectured picture of the large-N limit. 2

Altogether, it seems very plausible that the large N-
limit is appropriate for establishment of a connection
between QCD and the low-energy physics. Some
more phenomenological attempts in this direction can
be found. 7

In this Letter I will show, under a few technical,
essentially large-N assumptions, that to leading order
in the decoupling of heavy mesons, pure pseudoscalar
low-energy dynamics is completely calculable directly
from QCD, and it will be calculated truncated to four
derivatives. Among the calculated four-derivative
terms, apart from the usually assumed Skyrme term,
there are two other terms of opposite sign, making the
contribution of the quartic term to the static energy
not manifestly positive. Yet, under an assumption
about the classical solution for the scalar meson field,
the result leads to a natural realization of the previous-
ly proposed picture of a topological soliton bag model8
with massless quarks and gluons within an unbroken
vacuum bubble in the center of a topological soliton.

t

Further, I derive an expression for the effective poten-

[dU der ] [dG ] dq dq 5 (qLqtt —Vo. V)5(qtt qL,
—V cr V )exp iSQcD trrtJ qq .

The, current-quark mass term is included above. In principle, one could now imagine separating the measure into a

1985 The American Physical Society



VOLUME 55, NUMBER 1 PHYSICAL REVIEW LETTERS 1 JULY 1985

short- and long-wavelength part with respect to some
physical scale A (the chiral"-symmetry —breaking scale).
Above this scale one has a weakly coupled theory of
quarks and gluons moving with high relative momen-
ta. There are no bound states. A good description of
the physics in this region is given by perturbation in
the color coupling. Below the scale A the color forces
are becoming rapidly strong, the chiral symmetry
breaks down, and the bound states are formed. At
large X the bound states are mesons, interact weakly,
and are certainly much better candidates for the physi-
cal states than strongly interacting quarks and gluons.
Clearly, quantizing around the perturbative QCD vac-
uum is not appropriate anymore —QCD as usually
written should be rewritten such that quantization of
the small vibrations around the right ground state is
made possible. The first step in this direction was to
rewrite the action as in (2); the second is to integrate
out gluons. The resulting action G [J] ' is a functional
of a color current and has, therefore, a full local chiral
invariance. It contains all kinds of higher-dimension
composite operators as weil as the effective potential
which, following Ref. 9, is assumed to be some chiral-
invariant function of quark bilinears @j(x) defined
above. If we now expand composite operators around
their vacuum values and quantize the small vibrations
around the vacuum values, we get an effective theory
of mesons interacting with massive quarks. The ques-
tion is whether we can somehow extract the low-
energy dynamics of the lightest mesons, pseudoscalars,
without really explicitly calculating the effective action
due to gluons, G[J]. The observation which makes
this indeed possible is that the only piece of the QCD
action not having a full local chiral invariance is the

quark kinetic term and the measure. This means that
by making a particular chiral redefinition of the quark
fields one can extract the pseudoscalar mode from the
quark fields and rotate the Goldstone bosons away
from G[J]. Let us, therefore, make this particular
chiral change of basis, passing from chiral quarks to
massive ones:

qL = V'(x) qiU, q~ = V (x) qg.

In this gauge the pseudoscalars are localized to couple
only through the quark kinetic term and, because they
are introduced through a finite chiral rotation of the
quar ks, would also couple to the quark measure
[lnJ(U) term in (4) below]. G[J] now contains only
operators capable of creating the heavy mesons from
the vacuum. Those, however, are not excited in the
limit of very low energies and being interested in the
lowest-energy excitations above the ground state we
keep those operators frozen to their vacuum values.
This amounts to keeping only the zero-momentum
term, i.e. , potential, and we will drop out a complicat-
ed and unknown piece of G[J] containing chiral in-
variants made out of the heavy currents and deriva-
tives of the scalar meson-type quark bilinears. From
the viewpoint of calculating the effective, pure pseu-
doscalar theory this approximation means that we
neglect contributions to the coefficients of this theory
due to exchanges of the heavy mesons. Those contri-
butions are suppressed by inverse powers of the
heavy-meson masses and, as long as the momenta in-
volved are much smaller then the exchanged mass, are
not important. If we integrate the quarks out, the
long-wavelength part of the partition function becomes

[d U do. ]dS dP exp N, Tr ln [g ( U) —( m U+ S + i y P ) ] + ln J [ U] + i Jr [2 tr S a. —V,„,„(o.)], (4)

where & ( U) = i y (9~+ V~+ y~A„), V~ = —,
' ( V B„V+ V B~ V ), and A~ = —, ( V B~ V —V B„V ). The pair (SP)

of auxiliary fields is used to exponentiate the constraints.
Consider now the integral over the auxiliary fields Pand S. At large Nit is dominated by a stationary phase. Us-

ing the equations of the motion we find

We will therefore approximately evaluate the integral over P and S, at large N, by the replacement P=P„and
S = S„. Within this approximation the partition function describing the low-energy dynamics of scalar and pseudo-
scalar mesons is obtained and reads

Z = J~ [dU da. ]expi W«f( U o ),f

where

i W«r( U, o. ) = N, Tr ln ( &( U) —[ m U+ X (a.) ]) + ln J [ U] + i Jt [2 tro. X (o.) —
Vg,„,„(a.) ].

With X(o.) defined in (5), this expression is our first result. It makes manifest where the pseudoscalars are local-
ized and shows that pure pseudoscalar low-energy effective theory is, to leading order in the decoupling of heavy
mesons, completely calculable given (X), i.e. , the dynamical quark mass.
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The fermion determinant written above is, of course, a formal object and needs to be defined through some reg-
ularization method. I use the proper-time method. It is easy to show that this regularization respects the vector
gauge invariance. " The proper-time integration has to be truncated at some maximal momentum A, which is in-
terpreted to be the chiral-symmetry —breaking scale. For the effective potential we find

%,A
V,rr(o ) = '

z
Tr

3 exp[ —(5/A2)(mU+X) (mU+X)] —2tra- X(o-)+ Vg(„,„(o-).
327r' - ' S'

Minimization of the potential leads to the following interesting relation:

N A3 m& - dg mg—(qq)= '2, 2 exp —&

where m~ = m+ (9 V~~„,„/Bo-) „0 is the constituent-quark mass and (qq) = XF '(qzqIE). It is not difficult to see
that the nonvanishing current-quark mass leads necessarily to (qq) a0 above ((qq) = 0 is not the stationary point
in this case), but without knowing V~,„,„(o-) we are unable to prove whether symmetry breaking persists in the
limit of zero bare mass for the quarks.

In order to calculate the fermion determinants in (6) and arrive at the promised low-energy theory, one has to
calculate the corresponding heat kernel. While the quark measure we started with is defined with respect to the
massless Dirac operator, it is the dynamical-symmetry breakdown which leads to the appearance of the kinetic term
and nontopological four-derivative term for pseudoscalars, as our calculation will illustrate. If one imagines artifi-
cally turning off a dynamical-symmetry breakdown, only the Wess-Zumino phase, being of a topological origin,
will survive. In the presence of some external vector and axial-vector fields, the anomalies will be correctly repro-
duced. '2 We calculate the heat kernel truncated to four derivatives by expanding it in powers of X/A around the
massless kernel'3 and then calculating the contributions to four-derivative action to all orders in powers of X/A.
As the final result of a straightforward but very lengthy calculation we obtain

F Ne
W', rr(U, X) =J d"x' tr84U B„U—i '2„dsxer "~ tr(U BsUU B„UU B,UU BpUU 8 U)

+ [1—W(X )]tr[28 U 8 U+ —,
' [U 8 U, U B„U]2—(8+U Q„U)2]

f

+a A X " dS X m g m2
+ ' — exp —S — tr —(U +U) +0 +.

A "& g2 A 2 A
~ ~ f (9)

where W(X2) = 1 for X2 0, while W(X2) = 0 for (X) = m~. To leading order in the decoupling of heavy scalar
mesons, the resulting pure pseudoscalar theory is given by the terms explicitly displayed above. From the require-
ment that the kinetic term for the pseudoscalars is properly normalized as above, we obtain the following condi-
tion:

N, A2

16m 2
' exp—

r

m m m —&~~q gg mg F2
+ jm erf —1+ t M~ erf(m Ws) '=

A A A & 1/A' 2g/ A 0 4
(10)

In obtaining the last term in the brackets above, we
have assumed that a certain proper-time integral is
dominated by the region s & m& 2. Then the kernel in
the integrand, which is indeed exponentially suppress-
ed for s & m0 2, can be well approximated by its
small-s expansion. The details of calculation leading to
expressions (8), (9), and (10) are too technical and I
hope to present them elsewhere. The second term in
(9) is the celebrated Wess-Zumino terms'2 with
U = U(x, ~) interpolating between U =

exp [i (2/
F )II (x) ] at ~ = 1 and U = 1 at ~ = 0. The overall fac-
tor multiplying the four-derivative terms in (9) as well
as (10) above clearly indicates the chiral-symmetry

!
breakdown, i.e. (X)a0, as the origin of the appear-
ance of pseudoscalars. Among the four-derivative
terms, the second (Skyrme term) and third contribute
to the stability of the soliton. However, the first is of
opposite sign and tends to destabilize the soliton. ' It
does not seem possible to claim that the quartic term
will be manifestly positive and we conclude, therefore,
that radiative corrections are not a likely mechanism
for stabilization of the soliton. If, however, we as-
sume that the classical solution for o.(x), i.e. X(a-),
will interpolate between the unbroken vacuum at short
distances and the normal vacuum (X)%0 at large dis-
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tances, then the overall suppression factor multiplying
the kinetic (10) and four-derivative terms acts as a na-
tural space cutoff, essentially a step function, making
the contribution of pseudoscalars rapidly vanish below
a certain critical radius, and leaving a bubble of unbro-
ken vacuum with massless quarks and gluons inside.
The topological soliton will in this case be stable
against shrinking to zero size. The baryon number is
the sum of the fraction carried by the quarks inside the
bag and the topological charge carried by the chiral sol-
iton, and is unity.

Through our derivation we have seen the appear-
ance of the two relations, (8) and (10), relating the
four mass scales m&, A, (qq), and F„. If we take as
an input I' =95 MeV and m =130 MeV (m=8
MeV) we calculate A = 667 MeV and m& ——200 MeV.

The value of the quark mass comes out somewhat low.
The realistic value is obtained by lowering the cutoff A
to about 400 MeV. In this case the pion mass comes
out off by factor of 2 unless the current-quark —mass
input is taken well above (m = 30 MeV) the currently

favored value. '6 Indeed it might be reasonable within
our framework not to expect that the mass of the pion
is realistically accounted for.

A more detailed description of this work will be
presented elsewhere.
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