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Collective Modes in Simple Liquids: A Semiempirical Model
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A semiempirical model for the dynamical structure factor, S(0, t0), in a simple liquid is present-
ed. This is a modification of the Lorentzian form predicted by linear hydrodynamics that enables it
to be extended into the viscoelastic region while still retaining finite moments. The model leads
directly to a criterion for the existence of a sound mode which includes the possibility of soft modes
and dispersion gaps. By a suitable choice of parameters the experimental results for liquid Ar and
molten Rb may be explained.

PACS numbers: 61.25.Bi, 61.12.Fy, 61.25.Mv, 78.35.+c

The dynamical structure factor S(Q, to) (wave vec-
tor Q frequency co) of a fluid contains information
about the positions and motions of the particles in that
fluid. The motions involved may include all possible
types from single-particle diffusion at one extreme to
collective vibrational modes at the other. In the hy-
drodynamic region (Q (0.1 A ') S(Q, to) for a sim-
ple monatomic fluid consists of a central (Rayleigh)
peak broadened by thermal diffusivity and two non-
central (Brillouin) lines broadened by viscosity. The
frequency of the noncentral lines is determined by the
sound velocity. In the region accessible to inelastic-
neutron-scattering experiments ( Q )0.4 A ') side
peaks may be observed in S(Q, co) for some liquids
such as He ' and Rb, ' but not for others such as Ar. '
In Rb these side peaks broaden and disappear at Q=—1.0 A ' while in He they extend up to Q =—4.0
A-'.

The question of whether sound modes exist in a
liquid at Q values where they are not directly observ-
able as side peaks in S(Q, to) is a subject of some con-
troversy. Accurate neutron-scattering data have been
obtained for Ar by van Well et al. 3 de Schepper et al.
argue, on the basis of the generalized Enskog theory
developed by de Schepper and Cohen' and from fits to
the experimental data, that S(Q, co) may be described
by a sum of three Lorentzians (one extended heat and
two extended sound modes), as in the true hydro-
dynamic region, up to at least Q =4.0 A '. The
parameters derived from the fit predict that sound
modes are present in liquid Ar in this region even
though no side peaks are observed in S ( Q, to) . The
frequency of these modes softens rapidly at Q =—1.6
A ' and there is a dispersion gap where they have
zero frequency up to Q =—2.3 A

Lovesey argues that these predictions may be an ar-
tifact of the form of the function fitted and suggests
that linear hydrodynamics, and hence the description
of S(Q, co) by a sum of three Lorentzians, should only
be valid below Q =—0.3 A ' and that the line shapes
will differ in the viscoelastic region at higher Q. de

Schepper et al. 7 have shown that the experimental data
for Ar are described better by three Lorentzians satis-
fying the first three moments, hence with three in-
dependent parameters, than satisfying five moments
with one independent relaxation time as in viscoelastic
theory. They point out that the higher moments are
strongly dependent on data outside of the experimen-
tal range. van Well and de Graafs stress that higher
moments should be satisfied by the inclusion of addi-
tional Lorentzians, though this is not found to be
necessary within the experimental region. The direct
measurement of mode softening in molten MgC12 by
McGreevy and Mitchell9 suggests that the results of de
Schepper et al. are not simply artifacts of the theory.
However, there are still a number of problems. In par-
ticular, for the sum of three Lorentzians to have the
required finite moments there are relations between
the parameters that lead to negative amplitudes for the
extended sound modes at Q =—1.0 A '. This could
not be the case in liquid Rb where the sound modes
are observed to have positive amplitudes. Lovesey'
has shown that including up to the fourth moment
reduces the form of S(Q, co) to that predicted by sim-
ple viscoelastic theory but that this form is no longer
valid in the hydrodynamic region.

In this paper we discuss an empirical modification of
the Lorentzian form of S( Q, to) predicted by linear hy-
drodynamics that enables it to be extended to higher Q
and co while still retaining finite moments. This modi-
fication, based on a function originally proposed by
Egelstaff and Schofield" to describe single-particle
motion in fluids, has been used by Bunten et al. ' to fit
the light-scattering spectra of a number of molten
salts. While we accept the empirical nature of the
model we show that it can account for the observed
differences between Ar and Rb and for the existence
of soft modes. We suggest, therefore, that it may have
a wide applicability.

From linear hydrodynamics the (symmetrized) in-
termediate scattering function S(Q, t) =f S(Q, co)
& e'"'den has the form

S(Q ~0, t) =S(Q ~0)[ae '+(1 —a)e 'cos(toot)],
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where S( Q) =f S( Q, cu) des is the static structure factor and

S(g 0) = pkaTKT, a =(y —1)/y, r =1/DTQ, 7b=1/I Q, o)o ——Cg,

with p the number density, ka Boltzmann s constant, T the temperature, and Kr the isothermal compressibility.
y = C~/C„ is the ratio of specific heats, DT the thermal diffusivity, I the sound-wave damping constant, and C the
sound velocity. This gives the Landau-Plazcek form for the dynamical structure factor

S(g 0, o)) = pks TKT 'y

'y

DTQ 1 I g'
22+ 22+ I Q2

~'+(D,g')' 2&, ( —Cg)'+(I g')' ( +Cg)'+(I g')'
Equation (1) is strictly valid only for small Q and large r. We propose a modification such that

S(g t) =S(g) a exp[ —[(t +r~)' —r~]/rq) +(1 —a) exp [—[(t +v3) '73]/T4) cos(Q)or) (4)

which has the Gaussian behavior expected for a free particle in the limit t 0 but reduces to (1), with 1 = r2 and
7'p 'r4 for t » 'r &, ~3. (All parameters a, r, and coo are in general functions of Q. ) The dynamical structure fac-
tor is then

f

S( Q) g /~ 1 ) K](x) (1 —g) v3/r4 &3 K](y) KI(~)S Q, o) ae" "
1rp x 2 T4 y z

where x = a~(co + I/rz)' andyz = r3[(ct) +o)p) + I/'74] . K& is a modified Bessel function of the second kind.
The parameters in the model are not all independent but are related by the moments of S( Q, co):

(o)"S) =J o)"S(g, o)) do)=(i)". „d"S(,r)
dt" t=0

The odd moments are all zero as S(g, r) is even in t. The first three even moments are

( 's) =s(g), (7a)

( 's) =s(g) + ' +(1 —a),',
7 374

(7b)

r f

+1+2 ~3+4 7 ]7 2 'T374 737 4
(7c)

1 g kaT
(1 —a) Ms( g) T) 7'2

(1 —a)
V3 V4

In the limit g ~ [S(g) 1] we expect that
S(g, co) is a single Gaussian with a =1, coo ——0, and
7 ~r2 =M/g'ks T. For intermediate Q we may choose
(as an example) ~&~2 ——73~4 ——M/ g oksT We then.
have

2= 1

(1 —a)
QksT 1

s( g)
(10)

which predicts a dispersion gap (coo ( 0) for 1/
S(g) & n. If n = 1 the mode softens when S (Q) = 1,

which are finite as long as all time constants ~ are
nonzero. The classical value of the second moment
(ignoring recoil effects) is

(o) S) = g kaT/M,

where M is the atomic mass. Combining this with
(7b) gives the sound mode frequency

approximately the position observed by de Schepper
et al. 2 and McGreevy and Mitchell. In order to recov-
er the correct sound velocity we require that n 0 as
Q 0 but also that r2 » r&r2 and r4 » F3~4 to re-
tain the Lorentzian form of hydrodynamics. Since,
from (2), r2 '7 =1/DTQ and r4 v& ——1/I Q at
low Q then a choice of o.cc Q will satisfy both require-
ments. The model can therefore be extended directly
from the hydrodynamic to the viscoelastic region while
retaining the required moments. The condition for the
existence of a sound mode is coo &0. Side peaks in
S(g, co) disappear when the mode becomes over-
damped (which we define as when the half width at
half height of the peak is greater than coo).

We have compared the model with experimental
data for liquid Ar and Rb. For Ar a direct fit to the
experimental S( Q, cu) has been carried out and the de-
viation found is within experimental error, provided
that a collective-mode term is included. The data for
Rb are not sufficiently accurate for a direct fit to
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S(g, cu) and so to determine the parameters we have
used S(g), the width at half height of S(g, «0), and

the frequency of the peak in C (g, «0) = «02

XS(g, co), or co„ the frequency of the side peak in
S(g, cu) when it is directly observable. (This is the
case in Rb for Q & 1.0 A '.) For Rb we have also as-
sumed rtrq = F3~4. For both liquids the fit is required
to satisfy the second moment via Eq. (9); we have not
used («0 S) because the calculation would require a
knowledge of the interatomic potential. If we use the
indirect procedure, i.e. , as used for Rb, for Ar we ob-
tain a reasonable fit to S(g, cu) with parameters simi-
lar to the direct fit.

The Q dependence of the parameters determined is
shown in Fig. 1 for both liquids. At low Q the parame-

ters tend to the limiting forms discussed above [Eq.
(2)]. Although in the experimental g range there is
no side peak in S(g, cu) for Ar the parameters indicate
that a side peak should occur for g & 0.25 A '. In
the case of Rb a side peak is observed for g & 1.0 A
with duo =«0, . At low g we have coo ——Cg; as g in-
creases coo has a maximum at g =—gp/2, where Qp is
the g value of the first peak in S(g). The mode
softens for g ) gp/2 and «0O 0 for S(g) =1. «0, is
always slightly greater than «0o and remains finite with
a minimum when coo ——0, the height of the minimum
being determined by the width of the central line in
S(g, ~).

As noted above the Ar data cannot generally be fit-
ted within experimental error without including a
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FIG. 1. Representative parameters used in the model and as defined in the text. coo is calculated from the second moment
[Eq. (9)]. «0, and «0, are then determined by the resulting S( 0, co).
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collective-mode term, although the amplitude of the
mode tends to zero in the region where cop 0. The
mode is overdamped so that a side peak is not directly
observable in S(Q, cu). Because the mode amplitude
becomes zero (1 —a 0) in the mode-softening re-
gion (cup 0) it is not possible to determine unambig-
uously whether ~o reaches zero or exhibits a deep
minimum. Although there appears to be a tendency
for the mode to have a negative amplitude (1 —a & 0)
for Q &1.7 A ' there is also a tendency towards
c02o & 0 in the same region, in which case S( Q, cu) does
not have an analytic form. However a negative ampli-
tude for the mode is not required to fit the data at any

Q value.
In the low-Q limit the constants rz and rq are given

by hydrodynamics as the relaxation times associated
respectively with thermal diffusion and sound waves.
At higher Q the various r are generally in the range
0.1—1.0 ps; these are reasonable magnitudes although
it is not clear what physical processes they refer to.
For Ar as Q approaches Qp, r2 = S( Q)/DQ, where D
is the diffusion constant (0.68 &&10 s m s ' at the ex-
perimental temperature and pressure), indicating a
"structurally inhibited" diffusion mechanism. In the
same region r4 ——S(Q) pM/71Q~, where q is a general-
ized viscosity ( =—2.5 x10 ' kgm ' s ', about —, of
the shear viscosity). In the case of Rb the limitations
of the fitting procedure mean that individual time con-
stants should only be taken as representative; even so
they are of plausible magnitudes. We have not ex-
tended the model to high Q because the values of the
parameters determined for Ar for Q & 2.3 A ' indi-
cate that here the model is unrealistic. It is possible
that higher-order terms ("multiphonon effects") may
have to be introduced in this region, as is the case in
liquid 4He(II) ' and in high-temperature solids.

Our major conclusion is that, by a simple modifica-
tion of terms involving relaxation times, the results of
linear hydrodynamics may be extended into the
viscoelastic region while retaining finite moments for
S(Q, cu) and positive amplitudes for sound modes.
The model agrees well with experimental data for
liquid Ar and Rb. Furthermore, from the second mo-
ment the model leads directly to a criterion for the ex-
istence of sound modes which includes the possibility

of dispersion gaps.
The possible existence of such gaps in classical fluids

is of considerable interest. The quantum fluid He(II)
is observed' to have a minimum (not a gap) in the
dispersion for Q =—Qp, as has also been observed in
some disordered solids such as metallic glasses. ' In
the case of classical fluids the diffusive broadening of
the central line in S(Q, c0) means that a collective-
mode side peak cannot generally be resolved when ~o
is less than the central line width. The determination
of whether a collective mode exists, and if so whether
is has a dispersion gap or a minimum, depends, there-
fore, on the fitting of theoretical models. We suggest
that in these respects the form proposed here has cer-
tain advantages, as described, over the purely hydro-
dynamic form.
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