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Faddeev Calculation of Three-Nucleon Force Contribution to Triton Binding Energy
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The configuration-space Faddeev equations are solved for Hamiltonians that include the
Tucson-Melbourne and Brazil three-nucleon forces. Convergence in terms of the number of
three-body partial ~aves i.s established. First-order perturbation-theory results are shown to be
inadequate. Both three-nucleon forces produce approximately 1.5 MeV additional binding, which
overbinds the triton.

PACS numbers: 21.40. +d, 21.10.Dr, 27.10.+h

Trinucleon ( H and He) bound-state calculations,
using a model in which nonrelativistic nucleons in-
teract via pairwise "realistic" potentials that reproduce
nucleon-nucleon (i') scattering data up to 300 MeV
and properties of the deuteron, indicate that such a
Hamiltonian underbinds the triton by 0.8—1.1 MeV
and produces too large a charge radius by 0.1-0.2 fm. '

Because of these and other discrepancies between
model results and experiment, various groups have
made estimates of the contribution of long-range
three-nucleon forces to the binding of the triton.
These studies have dealt primarily with the Tucson-
Melbourne (TM) 8 and Brazil (BR)9 two-pion —ex-
change models of the three-body force, models which
respect chiral constraints. (These are the models we
have investigated, although a third approach in terms
of an isobar constituent model employing a three-body
isobar force of the Fujita-Miyazawa type' has been ex-
plored by Hajduk and Sauer. ") The diverse approxi-
mations used in estimating these three-nucleon force
contributions to the triton binding energy have
given the appearance of significant discrepancies
among some of the published calculations. ' Howev-
er, the results of Refs. 6 and 7 appear to have estab-
lished the numerical accuracy of the first-order
perturbation-theory estimates. Unfortunately, they
imply a strong model dependence. If this is the case,
then the assumption that we need consider only the
long-range part of the three-body force is invalid.
Thus, we are motivated to attack the full problem.

We have now solved the bound-state, config-
uration-space Faddeev equations to obtain numerically
exact results for the H binding energy using the TM
and BR three-nucleon force models for a single value
of the pion-nucleon form-factor cutoff A defined
below. We find several novel results: (1) The TM
model requires a nonperturbative treatment to obtain
even qualitatively reliable numbers; (2) both three-
body force models require that a large number of
three-body channels (viz. , 34, all two-body potential

components with J ~ 4) be included in the calculation
to ensure that the answer has converged; and (3) both
three-body force models lead to overbinding of H
whether the underlying two-nucleon Hamiltonian is
based upon the stiff Reid-soft-core (RSC)' or the
softer Argonne (V14)' nucleon-nucleon (%X) poten-
tial model. Furthermore, we find no strong model
dependence in the converged calculation, which sup-
ports the long-range two-pion —exchange assumption.
We elaborate on these points below.

Without attempting to pass judgment on the appeal
of the underlying philosophies of the competing
methods for generating three-nucleon forces, '4 we
shall adopt for the purposes of these theoretical inves-
tigations the TM (model independent) and BR (chiral
Lagrangian) models as our Ansa'tze. Most emphasis in
three-nucleon —force studies has been on the two-
pion —exchange component of the potential, because
the strong repulsion in the dominant W% interaction is
expected to suppress the effectiveness of shorter-range
components of the three-body force. These two
models of the long-range, two-pion —exchange three-
nucleon force have, in fact, the same functional form
but differ significantly in the value of one parameter
(c), which governs the size of the singular (5 func-
tion) part of the potential. For an analytic expression,
we refer the reader to Refs. 8 and 9. However, we
specify the model parameters which we have used in
Table I. Note that the BR model with c =0.0 is much
less singular. In addition, we have used a pion mass of
p, = 139.6 MeV, a nuclear mass of m = 6.726tt, , a coup-
ling constant of g =179.7, and a form-factor cutoff
parameter of 4=5.8p, . We emphasize that our pur-
pose is not to argue the validity of either model but to
produce benchmark trinucleon bound-state calcula-
tions, which can be used to determine the best means
of exploring three-body force effects.

In order to evaluate the three-body force results
which we have obtained, we first recall in Table II the
binding energies and charge radii of the RSC and V14
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TABLE I. Two-pion-exchange three-nucleon force
parameters for the TM and BR models.

TABLE II. Two-nucleon force results for the RSC and
V14 potential models as a function of the number of chan-
nels.

TM
BR

1.130
1.048

—2.580
—2.287

p, C
3

1.00
0.0

—0.7530
—0.7656

—Ep-

(MeV)
(r') ' '('He)

(fm)
( Q) 1/2(3H)

(fm)

nucleon-nucleon potential models for 5, 9, 18, and 34
channels. ' Note that the softer V14 potential calcula-
tion converges faster than that for the stiff RCS poten-
tial as a function of the number of the three-body
channels. (The value of J,„and the parity of the
NN-force partial waves for 5, 9, 18, and 34 channels,
respectively, are J ~ 1, +; J ~ 2, +; J ~ 2, +; and
J ~ 4, + .) The radii decrease as expected as the
three-body binding energy increases. ' (For a compar-
ison with results of other groups, see Ref. 15.)

We have used three different decompositions of the
Schrodinger equation into Faddeev equations in an ef-
fort to determine which method converges fastest
when a three-body force is included in the Hamiltoni-
an. (Lack of space prevents us from discussing in de-
tail the numerical methods we use to solve the equa-
tions; see, for example, Payne et al. ' ) However,
schematically we separate the Schrodinger equation
[with Jacobi coordinates x; = rj —r„, y; = (r, + r„)/
2 —r, ],

0+=EN,
H = T+ X, V(x, ) + W(r~, r2, r3),

+ = P(x&, y&) + P(x2, y2) + P(x3, y3),

= 4i+ A2+ 43

as follows:

(2)

(3)

(T+ V; —E)p; = —V;(p~+ pk) —Wp;,

(T+ V, E)y, = —V, (y, +y—„)——,
' W+,

(5)

(7)

where W = W~+ W2+ W3 as in Refs. 8 and 9. In each
of these decompositions, the three-body force is re-
tained on the right-hand side of the equations, so that
the NN tensor force couples at most two channels on
the left-hand side. We emphasize that each method of
decomposing the three-body force in the Faddeev
equations must lead to the same binding energy when
we include all (or enough) partial waves. That is, each
of Eqs. (5)—(7) is equivalent to the original
Schrodinger equation.

To check our eigenvalue solutions we use the wave
functions that we generate to calculate variational
bounds (H) = (4 (H [0') /(4 [4) . By projecting
( V+ W) in the same manner (same number of partial

RSC

V14

Expt.

9
18
34

5
9

18
34

7.02
7.21
7.23
7.35
7.44
7.57
7.57
7.67
8.48

1.89
1.87
1.87
1.85
1.86
1.84
1.84
1.83
1.69(3)

1.70
1.68
1.68
1.67
1.68
1.67
1.67
1.67
1.51 (4)

waves) that we employ in the Faddeev calculations, we
can test our accuracy by means of

(e (P) (~~T+ V+ W~~) (P ~e) = (H, ).
When we do not project the three-nucleon force, we
obtain a variational bound on the full (projected two-
body plus full three-body) Hamiltonian. We list in
Table III results for the three procedures [ W&, W, and
W/3 corresponding to Eq. (5), Eq. (6), and Eq. (7)] as
a function of the number of three-body channels (par-
tial waves) for the V14-TM model comprised of the
V14 NN potential plus the TM three-nucleon potential.
(Clearly, Ez= (Hp) to an excellent approximation. )
First, the results are incomplete for the W prescription
because for eighteen channels (the first opportunity to
include negative-parity NN-potential partial waves) the
eigenvalue was several hundred megaelectronvolts. If
enough three-body channels had been included, the
same answer would have been obtained. But this
anomalous result for eighteen channels caused us to
reject this procedure for TM force calculations.
(Results for the less singular BR potential were accept-
able. ) Second, although the Faddeev eigenvalue in the
W/3 procedure tracks the full Hamiltonian expectation
(H) better than that for W& in the V14-TM model,
the opposite holds for the RSC-BR case (not shown).
Thus, neither decomposition holds a clear advantage
when fewer than 34 channels are included in the calcu-
lation. Third, both the W& and W/3 procedures result
in the same (H) for 34 channels. The W/3 eigen-
value is closer (by 30 keV) for the TM force; for the
BR force the eigenvalues are identical for 34 channels
(but not for 18 channels).

Let us turn to the question of the validity of first-
order perturbation-theory to estimate the size of the
three-body force contribution to the triton binding en-
ergy. For the five-channel V14-TM model, Wiringa
et al. obtained a first-order perturbation-theory esti-
mate for ( W) of Eq = —0.14 MeV ((H) = —7.42
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TABLE III. Triton binding energies (MeV) from the V14-TM model for the three Fad-
deev decompositions of Eqs. (5)—(7) as a function of the number of three-body channels.

No. of channels —Ep- —(H~& —( Wp)

W/3

5
9

18
34

5
9

18
34

5
9

18
34

8.26
8.96
9.49
9.36
8.12
8.64

7 ~ 82
8.35
9.11
9.33

8.26
8.96
9.50
9.36

7.83
8.35
9.12
9.33

1.98
2.77
3.29
2.88

0.69
1.23
2, 61
2, 84

1.93
2.22
2.88
2.84
1.40
1.61

1.23
1.44
2.61
2.85

8.22
8.40
9.09
9.32
8.31
8.49

8.36
8.57
9.11
9.32

MeV) compared to our actual values for ( W) with the
Wt procedure of —1.93 MeV ( —8.22 MeV) and for
W/3 of —1.23 MeV ( —8.36 MeV). Ishikawa et al.
agreed with Wiringa et al. for the five-channel RSC-
TM model. In addition, they have made the first
eighteen-channel estimate, obtaining Et = —0.89
MeV; this is to be compared to our ( W) = —2.3 MeV
from the 8'~ procedure. First-order perturbation
theory appears completely inadequate to treat the TM
force. For the RSC-BR model, %iringa et al. found a
value of Et ———1.10 MeV for the five-channel wave-
function first-order perturbation estimate compared to
our (five-channel) complete-solution values of
(W) = —1.43 MeV, —1.35 MeV, and —1.32 MeV

for the Wt, W, and W/3 calculational procedures.
First-order perturbation theory yields qualitatively
correct results for the less singular BR three-body
force.

To make this point clearer, we examine Hajduk's
perturbation series' for E = ('P ~H ~+):

(+ IH I+) = Ep+ Et +E2+ E3. (8)

Here, we have Ep= (Wp~H2~% p) where H2 is the
NN-force Hamiltonian and Wp is its eigenfunction, and
E& = ( Pp~ W~ Pp), where W=H —H2 is the three-
body potential. If one assumes that E; =0 for I ~4,
then E2 ——3(E —Ep) 2E, —AE and E3 ———2(E —Ep)
+Et+DE, where AE= (0 ~ W~%'). Obviously this

TABLE IV. Perturbation series energies (MeV) as a function of the number of three-
body channels for the V14-TM and RSC-BR models with the 8'I Faddeev decomposition.

o. of
annels

18

—E
—Ep

—Eg

—E2

—E3

—E

Ep

—EI
—E2

—E3

V14-TM

8.26

7.44

—0.13

0.76

0.20

RSC-BR

7.64

7.02

0.49

0.09

0.05

8.96

7.57

0.35

0.71

0.34

8.77

7.21

1.13

0.30

0.13

9.50

7.57

0.92

0.66

0.35

8.69

7.23

1.10

0.27

0.08

9.36

7.67

0.76

0.63

0.29

8.89

7.36

1.17

0.31

0.06
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TABLE V. The S-channel, 9-channel, 18-channel, and
34-channel triton binding energies (negative of the W~
eigenvalues) for four model combinations.

o. of
nnels

34

V14-TM
V14-BR
RSC-TM
RSC-BR

8.26
8.32
7.55
7.66

8.96
9.27
8.33
8.77

9.49
9.06
8.93
8.70

9.36
9.22
8.86
8.89

series can be easily generated only because we have
the complete solution +. However, comparing Eq, E2,
and E3 permits one to understand just how we11 first-
order perturbation theory works. In Table IV we list
results for the V14-TM model as a function of the
number of three-body channels for the 8'& procedure
of Eq. (5). Clearly, there is no convergence; we do
not find E3 ((E2 ((E~. Furthermore, E~ as a func-
tion of number of channels varies significantly, as was
suggested by the work of Ref. 7. Also shown are
results for the RSC-BR model. Here the first-order E&
result is the dominant part of the E —Eo difference.
(Note also that nine channels give a reasonable ap-
proximation to the 34-channel result, because of the
less singular nature of the BR three-body force. ) Be-
fore leaving the perturbation-theory question, we point
out that the strong model dependence of the five-
channel result and the small value of Ej for that ap-
proximation accounts for most of the disparate results
referred to in the introduction. In particular, the
results of Wiringa et al. and Ishikawa et al. are com-
pletely consistent with Table IV.

Finally, let us examine eigenvalues from the
procedure, Eq. (5), for the four model combinations
in Table V. First, note that the 0.4 (0.3) MeV differ-
ence between the 34-channel V14-TM (V14-BR) and
RSC-TM (RSC-BR) eigenvalues is the same differ-
ence that is seen in Table II for the NN-force Hamil-
tonian eigenvalues. Both three-nucleon force models
yield approximately 1.5 Me V additional binding.
Second, the RSC-TM and RSC-BR 34-channel eigen-
values are very similar; the strong short-range repul-
sion of the RSC NN force does effectively suppress the
contribution of the singular short-range behavior of
the TM force (the c term). The softer V14 NN force
allows differences in the two three-body force models
to show themselves slightly. Third, we reiterate that
one needs a full 34-channel calculation to obtain quan-
titatively reliable results. That is, the small (odd-
wave) components of V are needed to obtain an accu-
rate result because of the strong odd-wave coupling of
the three-body force. In this limit, one finds support
in the lack of model dependence for the conjecture
that the long-range, two-pion —exchange three-body

force is the component of primary importance because
of the strong short-range repulsion of the NN force.
Fourth, both three-body force models appear to pro-
vide too much attraction. That is, within the context of
a nonrelativistic nucleon assumption, the triton is
overbound. This conclusion is, however, strongly
dependent upon the value of A chosen for the m-
nucleon form factor, as one can see from Ref. 7.

Details of the calculation along with results for other
properties of H and He will be reported elsewhere, as
will Nd scattering-length results. However, it is worth
noting that our calculations indicate that these two
three-body —force models do not move one off the
"Phillips' curves" reported by Friar et al. '
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