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The domains of weak coupling of superstring theories are identified. Compactifications on
Calabi-Yau spaces encounter a problem related to vacuum stability. Although the string theory
may be weakly coupled and a semiclassical approximation may be valid, both theoretical and
phenomenological arguments indicate that the nonlinear a- model on the string world sheet must be
strongly coupled.

PACS numbers: 11.30.pb, 12.10.—g

Superstring theories' have no dimensionless parame-
ters. However, they do have a perturbation expan-
sion. Classically, and in perturbation theory, string
theories have a large set of physically inequivalent, de-
generate vacua. These states are labeled by the vacu-
um expectation value (VEV) of the ten-dimensional
"dilaton" field, @, and also by VEV's of fields which
describe the size and shape of possible cornpactified
dimensions. These VEV's may serve as expansion
parameters. 2 It is the purpose of this note to clarify
the nature of the perturbation expansions, and to
determine the regimes of weak coupling. We will see
that there are two senses in which the theory may be
weakly coupled. The VEV of the dilaton field deter-
mines whether or not the string theory itself may be
treated semiclassically. The size of the internal mani-
fold, measured in string units, determines whether or
not the corresponding nonlinear cr model on the string
world sheet is weakly coupled. It is logically possible
to be in a semiclassical regime for the string theory
while in a regime of strong coupling for the a- model.
In such a situation, there is no energy range in which
the theory looks like a ten-dimensional field theory.
We will argue that the true (nonperturbative) ground

states of string theory either lie at flat, ten-dimensional
space and/or vanishing couplings, or they lie in a re-
gime where the o- model, and possibly the fu11 string
theory itself, are strongly coupled.

The low-energy limit of string theory can be
described by a field theory of massless particles. The
Lagrangian of this theory, even classically, contains
operators of arbitrarily high dimension obtained by the
integrating out of massive modes of the string. This
field theory must be viewed, of course, as a cutoff
theory, with a cutoff of order the string scale,
Ms —n' 'i . (In particular, ghosts and other objects
which may appear in this theory at scales of order Ms
are to be ignored; they exist in a momentum regime
where the field-theory description is inappropriate. )

The d =10 supersymmetric Lagrangian, with terms
up to second order in derivatives, has been obtained
by Bergshoeff et a/. for the Abelian case, and general-
ized to the non-Abelian case by Chapline and Manton
(an additional term required for the supersymmetry of
the non-Abelian Lagrangian has been obtained by
Dine, Rohm, and Witten'). With a rescaling of the
fields in this Lagrangian by appropriate powers of K

and gto, the ten-dimensional gravitational and gauge
couplings, respectively, the bosonic terms are
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It is clear that by rescaling @ we may eliminate g&o

from this Lagrangian, and measure all dimensionful
quantities in units of M~~'o~ =K 'i" (this definition is
not conventional). The Lagrangian then contains only
one length scale and no dimensionless parameters.
Also, @ (or some power of it) acts as a coupling con-
stant.

The metric here has been defined so that there are
no powers of @ in front of the gravitational term. In
particular, the graviton has a canonical kinetic term.
The scale M~~' ~ thus appears fundamental. With this
convention, the scale Mq, which is the cutoff for the
field theory, is $ dependent; perturbation theory in

t

the different vacua labeled by @ appears to be cut off
at different scales. To see this, it is convenient to
work with a field, D, defined by @=exp[( —', ) ' 2KD].
D has a canonical kinetic term; this is the field which
creates properly normalized single-dilaton states. Both
in the Veneziano model and in superstring theory, a
zero-momentum D insertion is proportional to the free
string action, with proportionality Ka. A change in D
just corresponds to a change in Ms (this is most easily
seen in the functional integral formulation, i.e. ,

BMs/BD = a KMs or Ms = Ms (D =0) e'" . To deter-
mine the constant a for the various superstring
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theories, it is not necessary to perform an actual string
computation; we need simply note certain well-known
facts. For the heterotic string, v=gip/Ms. (For no-
tational simplicity, we define Ms so that the propor-
tionality constant here is 1). For this to be consistent
with the $ dependence of the gauge coupling implicit
in Eq. (1), we require Ms2 ——@3/4M(' . For type-I

strings, K =gipMs, so that Ms = @
2 -3j4 {10)2

It is natural, instead, to view Mq as fundamental. In
Eq. (1), we can rescale the metric, and thus rescale
our units of length, so that Ms is @ independent. Con-
sider, first, the heterotic string. If we take g~„

'/ g „, and also rescale the fermion fields ac-
cording to P„@ 3/'6P~, X @3/'6X, and A.

@
/'

A. , the ten-dimensional Lagrangian becomes

1 I (ip)
e
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Here we have set Mq =1. While we have not indicated
all of the terms in the Lagrangian explicitly, we must
stress that with these field redefinitions, there are no
powers of @ in the brackets. We see that the perturba-
tion expansion is an expansion in @'. For not only
does @

3 sit in front of the whole Lagrangian, but Ms
is the only scale appearing here, and it is the cutoff.
One can show the same thing in the full string theory
using, e.g. , the functional integral formation. It is
clear that an expansion in Q in either the field theory
or the string is an expansion in loops. The limit @ 0
is the semiclassical limit of these string theories.
Indeed, there is no power of P in front of the counter
terms added by Green and Schwarz to cancel the
anomalies, as they are a one-loop effect.

This rescaling also illuminates other features of the
string theory and its low-energy limit. In particular,
Witten9 has noted that the classical equations of
motion of string theory possess a scale symmetry
under which @ and g„„are rescaled. In the old vari-
ables, 0 —A4, g.„-A3/4 g~.. .-Under this transfor-
mation, the Lagrangian itself is multiplied by a con-
stant. The new metric we have defined above is in-
variant under this transformation; only @ transforms.
In the new Lagrangian, this symmetry is manifest.
Witten's observation ensures that, even if we include
some number of massive modes, or higher-dimension
operators (obtained by integrating them out classical-
ly), the Lagrangian can still be cast in this form, i.e. ,
with @

- out front.
It is intriguing that, with these redefinitions, the su-

persymmetry transformation laws in the limiting field
theory look simpler; in particular, they do not contain
explicit powers of @. For example, 5A„= —, el „X.
(Here e has also been rescaled, e @

' ' e.) Perhaps
these variables hint at a more natural formulation of
string theory.

For type-I strings, things are not so simple. As not-
ed above, in this case, Ms =@ M~(' ) . Rescaling
the metric so that Ms is $ independent yields the
Lagrangian

L (lp) & @3~ & y3/2y'2 & ~2

(3)

This is not homogeneous in @. Loosely speaking,
loops of gauge particles go as @ /, while gravitational
loops go as $ 3 (reflecting the original relation
& —g2). Also, weak coupling here corresponds to
large @. Clearly expansion in powers of @ does not
correspond to expansion in loops. This is a reflection
of the well-known fact that certain open string loop di-
agrams can be deformed into tree diagrams with closed
string exchanges.

There are also fields whose VEV's label different
sizes and shapes for the possible internal spaces. (We
have in mind, for example, the compactifications of
Candelas er aL, ' and Witten" and Strominger and
Witten, " to M" &&K, where E is a Calabi-Yau space. )
We focus, again, on the heterotic string, and work in
terms of the rescaled variables. Consider, first, dila-
tions of the internal manifold. If we call gj =Xg~,
where g;P is some fixed, reference metric [such that
jd x(g )'/ =Ms ], then X'/ is essentially the ra-
dius of the internal space measured in string units. A
simple computation also shows that X '/2 is the unifi-
cation scale, in string units: X '/2 = MoUT/Ms.

The string action is (I/47m') jd2gg/Jrl X/Q XJ
+. . . . Note that the metric appearing here is the re-
scaled metric of Eq. (2), not the canonical one, and so
n' is independent of @. We see from this expression
that X ' is the coupling constant of the nonlinear o-

model on the world sheet. For large X (large mani-
folds or small MoUT, in string units), the o. model is
weakly coupled; for small X (small manifolds), the o-

model is strongly coupled. Note that it is perfectly
possible to have a weakly coupled string theory, i.e. , a
theory in which complicated world-sheet topologies
may be ignored, with a small internal manifold. The
problem, in such a case, is to solve a strongly coupled,
two-dimensional field theory; string theory, however,
is semiclassical. The regime of large Lcorresponds to
a situation where the unification scale is much less
than Mq, the "Kaluza-Klein" states are lighter than
the other string excitations. In the regime of small X
(and small $), the Kaluza-Klein excitations are as
heavy as the other string excitations; there is no re-
gime in which the theory can be described as a ten-
dimensional field theory. Note that, for @« 1,
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Mt'o~ =Ms@ 3/8 is larger than both MGUz and the
cutoff Ms and gravity is indeed semiclassical.

Thus we see that upon compactification, we have
two expansion parameters. $ controls the size of
quantum corrections. Xdetermines the importance of
higher-dimension operators in the effective ten-
dimensional field theory (at either the classical or
quantum level). For large X, the four-dimensional
Lagrangian has the form

L=—Y( ——,A — I „+—. . .),1 (4) , , 2

e (4)

where Y =X3$ . Yand Xare massless fields in four
dimensions (in Refs. 5 and 9, X and Ywere called T
and S, respectively). Note that Y ' =gGUI, the gauge
coupling at the GUT scale. Also, M~ =K~ and
MGUz are related to @, X, and Ms through

Mp = YMs and ~s X~GUT. From renormaliza-(4)2 2 2 2

tion-group arguments, '2 we expect that Yis of order 1

MGUT. Since $ = Y '(Ms/Mrv'r)', if 0 is «be
small and the string perturbation expansion is to be
reasonable, MGUz cannot be significantly less than Ms.
(The fact that MGU~ cannot be much less than M~
has already been noted by Kaplunovsky using a some-
what different argument. '3 This means that X is
necessarily greater than or of order 1. The o- model
cannot be too weakly coupled.

To construct a realistic theory of compactification,
we must first assume that we are in the semiclassical
regime ($ « 1); otherwise, the string is strongly
coupled and we cannot hope to attack the problem at
present. Reference 10 suggests a particular family of
compact configurations —Calabi-Yau spaces. This sug-
gestion is based on two independent arguments, both
of which assume that Xcan be arbitrarily large:

(1) Space-time supersymmetry in four dimensions:
For X » 1, it is sufficient to consider the low-
dimension terms in the d =10 Lagrangian and in the
supersymmetry transformation laws. The equations
for unbroken supersymmetry can be analyzed pertur-
batively in X, and their solutions are the Calabi-Yau
spaces.

(2) World-sheet conformal invariance for every X
required for consistency of string theory, dictates zero
P function to every order in the coupling constant,
X '. This again leads to Calabi- Yau spaces. A closely
related argument shows that these manifolds are solu-
tions to the classical equations of motion, to all orders
inX '.

Since these two requirements are satisfied for every
X X like P, is massless and has no potential at tree
level; this is almost certainly true in perturbation
theory as well. For large Xand Y, the analysis of Refs.
10 and 11 is justified, the minimal d =10 Lagrangian is
a good approximation, and all corrections, both classi-

cal and quantum, are small. However, as shown in
Ref. 5, nonperturbative effects in the second E8 (if it
has an unbroken, non-Abelian subgroup) generate a
potential for the fields X and Y, which tends to zero
for large Y and/or large X—weak coupling and/or
large manifolds. The true vacuum is thus flat ten-
dimensional space and/or zero gauge coupling.

It must be stressed that this instability forces the
system to the domain in which the approximations are
more and more reliable. Thus, if string theory is to
describe the real world, then either at 'small X, where
our methods break down, there is a minimum of the
potential with vanishing cosmological constant and
broken SUSY, or there are such vacua among field
configurations other than those of Ref. 10. One possi-
ble modification was suggested in Ref. 5: a nonvanish-
ing background H field proportional to the covariantly
constant three-form. In this case, there does exist a
vacuum state in the lowest nontrivial order, with bro-
ken supersymmetry and vanishing cosmological con-
stant. In this order, the field Yis determined in this
state while the field X is not. This sounds very
promising. However, (II) is the coefficient of a
Wess-Zumino term in the o- model, and hence it is
quantized. ' As a result, several problems arise:

(1) The nonlinear o- model on the world sheet is no
longer conformally invariant for every value of X At
best, there are some discrete points where this is
true. ' Xis then of order 1, and the compact manifold
is small.

(2) The gluino condensate and the scale of the other
E8 are of order MGUz, and there is thus no energy
range where the field-theoretical analysis of Ref. 5 is
valid. In hopes of obtaining at least a qualitative pic-
ture, we can pretend that (H) is small. It was shown
in that paper that, in this case, the effects of gluino
condensation, at low energies, could be described in
terms of an effective field theory for the X, Y, and
gauge fields. Ordinary matter fields can be included
along the lines of Ref. 9. At tree level, all soft break-
ing terms for the ordinary fields vanish. At one loop
in this (cutoff) theory, these masses are generated.
Their precise values depend on the cutoff, which in
turn depends on details of the string theory. However,
if (H) and X are of order 1, these corrections are of
order Mp (up to powers of gGU&= Y ' —1) and
supersymmetry does not lead to a gauge hierarchy.

In conclusion, we have identified the fields whose
VEV's play the role of the string coupling (qV for the
heterotic string and @

/ for type-I strings) and the
o.-model coupling (X). For the string to be weakly
coupled (to have a valid semiclassical approximation),
@ must be small (large, for type-I strings). We have
seen that since the unified gauge coupling cannot be
too much less than 1, if @ is to be small, X must be
less than or of order 1.
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We were forced to small X by other considerations
as well. For large L, the solutions of the classical
theory are the field configurations on Calabi- Yau man-
ifolds described in Refs. 10 and 11. However, nonper-
turbative effects lift the degeneracy among these va-
cua, and cause a runaway to flat ten-dimensional space
and/or zero coupling. This instability may be avoided
if the other Es is broken to an Abelian subgroup [e.g. ,
U(1)s1. In this case, however, it is unclear how super-
symmetry breaking is to arise. Alternatively, it is pos-
sible that the theory has a stable vacuum at L —1

where our approximations break down, or that the
compact manifold is not a Calabi- Yau space and exists
at an isolated point in field space, not connected to flat
M' . Correspondingly, the a- model would only be
conformally invariant for isolated values of X If such
a configuration exists, and in addition leaves an unbro-
ken N = 1 supersymmetry in four dimensions, it might
also provide a solution to the hierarchy problem.
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