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Renormalizing the Nonrenormalizable
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A perturbatively nonrenormalizable variant of the Gross-Neveu model of Euclidean quantum
field theory with bare propagator p/p?~¢ is considered. We outline a rigorous argument proving
that by appropriate choice of the bare coupling constant the model may be renormalized nonpertur-
batively, which results in a theory governed at short distances by a non-Gaussian fixed point of the
renormalization group.
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During the last decade or so the old views on the In the present paper, we provide a rigorous argument
consistency of local quantum field theories, based on for the thesis that perturbative renormalizability need
the perturbative classification into superrenormaliz- also not be a necessary condition for the existence of a
able, renormalizable, and nonrenormalizable cases, model of quantum fields. More specifically, we out-

have undergone a modification. The development of line a construction® of the fermionic model in two Eu-
the renormalization-group (RG) ideas relating the clidean dimensions with the action

field theories to the fixed points of RG transforma- - _ -

tions,! the discovery of the role of asymptotic free- S=f\p16(—A) S/z‘l’_gf(‘l"l’)z’ M
dom,? and detailed studies of the ¢} model® raised the  yhere o stands for a multiplet of N > 1 Dirac fields
point that perturbative renormalizability need not be a For e=0 this is the (renormalizable, asymptoAticaII);
sufficient condition for the existence of a field-theory free) Gross-Neveu model whose massive version has
model. On the other hand it was realized that difficul- been recently rigorously constructed.”® For € > 0 the

ties with some nonrenormalizable theories may reflect model becomes perturbatively nonrenormalizable be-
the failure of the perturbative approach rather than in- cause of the slower decay of the free propagator

. . . 4 .
hf:rent inconsistencies. For examgle, it was p/p? € at large momenta. Nevertheless, it can still be
discovered that some of the nonrenormalizable models treated by similar rigorous RG techniques. We intro-
. . . 5 .
may be renormalized in each order of 1/N expansion. | duce an ultraviolet cutoff A, replacing the propagator
by
F(l—-e/Z)_pfA_2daa—E/2e_‘”’2 — p/p*-. 2

A— oo

The aim is to choose g, in such a way that a (nontrivial) limit A — oo of the interacting theory exists. The ques-

tion is studied by consideration of effective lower-energy actions Sfff obtained from the bare one S, by lowering

the cutoff via integration over the part of the field corresponding to the high-momentum propagator:
~ A -2 _ _
T =TU=e/)7p [ daaI2e 3)

The continuum-limit problem now becomes the question about the existence of the A — oo limits of S gff (or their
versions with source terms added to S, ) for arbitrary but fixed A. For easier comparison, one usually rescales the
actions to the unit-cutoff regime by introducing the ‘‘Hamiltonians™’

Hp() =S, (A0+92(A ), 4
Hiff(w)=5§ff(/§(1+s)/2w(1§,))_ ©)

H, and H }{“ are related by the action of the semigroup of renormalization-group transformations: for example for
A=L"A,

Hiff =R"H. (6)
The transformation R is defined by
RH (y)=H(y) — 1nf expl — HI(L=W+O2y (L1 ) + &) — 5 (€l 7,2 11€) 1DED £ +const, @)

© 1985 The American Physical Society 363



VOLUME 55, NUMBER 4 PHYSICAL REVIEW LETTERS 22 JULY 1985

where H(=H, |, —o) is the free Hamiltonian and H'=H — H°. The propagator of ¢ in Eq. (7) possesses both an
ultraviolet and infrared cutoff and if H' is local (as is H) ) and has small couplings, the perturbation expansion for
RH in powers of H! converges (a special feature of fermionic cutoff functional integrals’). This remains still true
for H only approximately local (as is RH produced from a local H) and allows us to introduce a space .# of Hamil-
tonians such that for H' in a neighborhood of zero (the Gaussian fixed point of R) in .#, (RH)! is given by the
convergent perturbation series in H' and belongs again to.# . More specifically, we consider H’ [with the Euclide-
an, U (N), and chiral symmetries] given by

Hl(lll)=2flaa—gf($d/)2 + i 2 fdxl"'dX2mﬁ2m(X1,...,X2m,A1,...,A2m)
)

m=1(4y,..., Aym

2m
x:T1 Wy (x):<6= (zg.H), (8)

i=1

where ¥ = (¥ ) = (¢, ¥, dy, dy) is the multiplet of fields and their first derivatives and ::<¢ Wick orders with
respect to H° the terms of order =<6 in ¥. The m =1 term must have both fields differentiated, and m =2 at
least one, as the leading local terms have been singled out in Eq. (8). Defining

| H?*™|| = 2 fdxz---dx2m|I-12’"(x1,...,Agm)leXP[f(Xp---:xzm)]» €)
Ay Agy)
where £ (x1, . . ., X, ) is the length of the shortest M -
tree on X, . . . , X2y, We take _# as the space of H! of ' fixed point,
Eq. (8) with H*=H{ +0(€?), (14)

WH'I = sup(lz|, lg], N H?™1lgg?™ ) < oo, (10) for small € and to study the linearized RG transforma-
tion at H* which appears to have L"! and L"? with
vi=2e+0 (), v,= —e+ 0 (€?) as the biggest eigen-
values. An easy inductive argument allows us to prove
that the line of bare theories (0,g, 0) intersects the
stable manifold of H* (of codimension 1) at g,
=g*+ 0 (&?) whereas the unstable one (of dimension
1) connects H* to the Gaussian fixed point; see Fig. 1.

Now, it is easy to guess the right choice of the bare
couplings which leads to a nontrivial continuum limit.

where g is a small constant and y(1,2)=0, y(m)
=1+ (m —4)/10 for m = 3. The choice of # is ob-
viously motivated by the properties of RH, for small
ga-

As R is given by a convergent perturbation expan-
sion in the neighborhood of zero in .# , it is easy to es-
tablish its leading behavior. For example, in the lead-
ing orders we have

z— L™ %2 +y,8%+. .., Take bare Hamiltonians H, with

(11) —nv, *

=g - - 5
g—'L—2‘g—Bzg2+..., &n =8¢ L (g g) (15)
where

Vo= 2N—21 InL + O (e),

(12)
B2= _2V=D s o).

T

Neglecting other terms, we obtain a fixed point of Egs.
(11) at

2N —1
Z*=—€+O(€2),
O a(w=1)2
13)
* m 2
= + 0 (€°).
80 =N _1 ()
It bifurcates from the Gaussian one at e=0. It is a
standard job to establish, using the contractive map- FIG. 1. The renormalization-group flow between the
ping principle, the existence of a true non-Gaussian Gaussian (Hg ) and the non-Gaussian (H*) fixed points.
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and g < g*. Then the flow of H, under R" (first along
the stable manifold, then along the unstable one) can
be easily followed and the desired limit
lim R"~*H,= H¢'" (16)
n = oo
lying on the unstable manifold between the fixed
points can be easily established by simple geometric
analysis in .# . Also

*

: eff _
Am HE = go a7
g is approximately the quartic coupling of H§. Notice

that Eq. (15) corresponds to the choice
ga=A"2lg.— (uW/A)"(g*—g)] (18)

of the bare coupling constant.

As Eq. (17) indicates, the continuum-limit Euclide-
an field theory constructed in this way has short-
distance behavior governed by H* and massless
asymptotically free long-distance behavior (the mas-
sive theory can be also constructed for g*— g of both
signs). We expect to be able to extend this result to
the Gross-Neveu model in three dimensions for big N.
Although somewhat academic (the e theory lacks
physical positivity because of the nonpolynomial na-
ture of its inverse propagator), the present example
should convince us that nonrenormalizable models of

field theory governed at short distances by non-
Gaussian RG fixed points may be consistent. Whether
Nature makes use of such a possibility in the
ultrahigh-energy region remains to be seen.
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