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Renormalizing the Nonrenormalizable

K. Gawqdzki
Centre National de la Recherche Scientifique, Institut des Hautes Etudes Scientifiques, 9I440 Bures sur -Yvet-te, France

and

A. Kupiainen
Research Institute for Theoretical Physics, Helsinki University, 00I 70 Helsinki, Finland

(Received 30 May 1985)

A perturbatively nonrenormalizable variant of the Gross-Neveu model of Euclidean quantum
field theory with bare propagator p jp ' is considered. We outline a rigorous argument proving
that by appropriate choice of the bare coupling constant the model may be renormalized nonpertur-
batively, which results in a theory governed at short distances by a non-Gaussian fixed point of the
renormalization group.
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During the last decade or so the old views on the
consistency of local quantum field theories, based on
the perturbative classification into superrenormaliz-
able, renormalizable, and nonrenormalizable cases,
have undergone a modification. The development of
the renormalization-group (RG) ideas relating the
field theories to the fixed points of RG transforma-
tions, ' the discovery of the role of asymptotic free-
dom, 2 and detailed studies of the @4 model raised the
point that perturbative renormalizability need not be a
sufficient condition for the existence of a field-theory
model. On the other hand it was realized that difficul-
ties with some nonrenormalizable theories may reflect
the failure of the perturbative approach rather than in-
herent inconsistencies. For example, it was
discovered that some of the nonrenormalizable models
may be renormalized in each order of 1/N expansion.
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In the present paper, we provide a rigorous argument
for the thesis that perturbative renormalizability need
also not be a necessary condition for the existence of a
model of quantum fields. More specifica11y, we out-
line a construction6 of the fermionic model in two Eu-
clidean dimensions with the action

where p stands for a multiplet of N & 1 Dirac fields.
For e=0 this is the (renormalizable, asymptotically
free) Gross-Neveu model whose massive version has
been recently rigorously constructed. For e ) 0 the
model becomes perturbatively nonrenormalizable be-
cause of the slower decay of the free propagator
p/p ' at large momenta. Nevertheless, it can still be
treated by similar rigorous RG techniques. %e intro-
duce an ultraviolet cutoff A, replacing the propagator
by

(2)

The aim is to choose g~ in such a way that a (nontrivial) limit A ~ of the interacting theory exists. The ques-
tion is studied by consideration of effective lower-energy actions SA'ff obtained from the bare one SA by lowering

the cutof f via integration over the part of the field corresponding to the high-momentum propagator:

Mpp(p) = r (1 —e/2) p), dn n (3)

The continuum-limit problem now becomes the question about the existence of the A ~ limits of SA" (or their

versions with source terms added to SA) for arbitrary but fixed A. For easier comparison, one usually rescales the
actions to the unit-cutoff regime by introducing the "Hamiltonians"

H (I/l) =S (A"+' 'y(A )),
Heff (q ) Seff (A (t+~)/2y(A . ))

(4)

„and ~-' are related by the action of the semigroup of renormalization-group transformations: for example for
A =L"4,

Huff Rn~
A

The transformation R is defined by

RH(p) =H (P) —1n)t exp[ —H (L '+' I P(L ' ) +g) —
2 (g~~~, '

~~/) lDJDg+const,
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where H ( = Hw lg =o) is the free Hamiltonian and H = H —H . The propagator of g in Eq. (7) possesses both an

ultraviolet and infrared cutoff and if H is local (as is HIA ) and has small couplings, the perturbation expansion for
&H in Pow«s of H' converges (a special feature of fermionic cutoff functional integrals7). This remains still true
«r H only appro»mately local (as is AH produced from a local H) and allows us to introduce a space ~ of Hamil
to»ans such that for H in a neighborhood of zero (the Gaussian fixed point of g) in ~, (gH)l ts gtven by the
convergent perturbation series in H and belongs again toM . More specifically, we consider HI [with the Euclide-
an, U(N), and chiral symmetries] given by

2m

&&: II +g, (x;): 6= (z,g,H), (8)

where 0 = (0 ~) = (p, p, r)p, Bp) is the multiplet of fields and their first derivatives and::«6 Wick orders with
respect to H the terms of order ~ 6 in 'P. The m = 1 term must have both fields differentiated, and m = 2 at
least one, as the leading local terms have been singled out in Eq. (8). Deftntng

X JI», . dx, IH' (xt, . . . , g, )(exp[~(xt, . . . , x, )],

wh«e ~(xt, . . . , x2 ) is the length of the shortest
tree on xq, . . . , x2, we take ~ as the space of H of
Eq. (8) with

fixed point,

H"=Ho + 0(e ), (14)

IIH II = sup(fzf, fgf, IIH llg ( ) ) &, (10)

where go is a small constant and y(1, 2) =0, y(m)
= 1+ (m —4)/10 for m ~ 3. The choice ofM is ob-
viously motivated by the properties of RHA for small

As R is given by a convergent perturbation expan-
sion in the neighborhood of zero in M, it is easy to es-
tablish its leading behavior. For example, in the lead-
ing orders we have

z ~ I. 'z+y2g2+. . . ,

for small e and to study the linearized RG transforma-
tion at H' which appears to have I. ' and L ' with
pt ——2m+0(e ), t 2= —a+0(e ) as the biggest eigen-
values. An easy inductive argument allows us to prove
that the line of bare theories (O,g, 0) intersects the
stable manifold of H' (of codimension 1) at g,
=g"+0(e ) whereas the unstable one (of dimension
1) connects H' to the Gaussian fixed point; see Fig. 1.

Now, it is easy to guess the right choice of the bare
couplings which leads to a nontrivial continuum limit.
Take bare Hamiltonians H„with

where

"g P2g'+. . . , —

2W —1
y2= lnL +0(e),

2&2

2(N —1)P2= lnL + 0 (e).
(12)

Neglecting other terms, we obtain a fixed point of Eqs.
(11) at

2N —1 2zo , a+0(e ),
2(N —1 2

(13)

go —— + 0 (e').
% —1

It bifurcates from the Gaussian one at &=0. It is a
standard job to establish, using the contractive map-
ping principle, the existence of a true non-Gaussian

FIG. 1. The renormalization-group flow between the
Gaussian (Ho' ) and the non-Gaussian (H') fixed points.
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r

H'
11m Hk =

pk~ +oo
(17)

g is approximately the quartic coupling of Hp f. Notice
that Eq. (15) corresponds to the choice

(18)
of the bare coupling constant.

As Eq. (17) indicates, the continuum-limit Euclide-
an field theory constructed in this way has short-
distance behavior governed by H' and massless
asymptotically free long-distance behavior (the mas-
sive theory can be also constructed for g' —g of both
signs) . We expect to be able to extend this result to
the Gross-Neveu model in three dimensions for big N.
Although somewhat academic (the e theory lacks
physical positivity because of the nonpolynomial na-
ture of its inverse propagator), the present example
should convince us that nonrenormalizable models of

and g & g'. Then the flow of H„under R" (first along
the stable manifold, then along the unstable one) can
be easily followed and the desired limit

lim g"
n~~

lying on the unstable manifold between the fixed
points can be easily established by simple geometric
analysis in~. Also

field theory governed at short distances by non-
Gaussian RG fixed points may be consistent. Whether
Nature makes use of such a possibility in the
ultrahigh-energy region remains to be seen.
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