
VOLUME 55, NUMBER 4 PHYSICAL REVIEW LETTERS 22 JUL+ 1985

Phase Transitions in Finite Systems: Influence of Geometry
on Approach Toward Bulk Critical Behavior

Surjit Singh
Department of Physics, University of Waterloo, Waterloo, Ontario N2L 3GI, Canada

and

R. K. Pathria '
Center for Studies of Nonlinear Dynamics, La Joiia Institute, La Joiia, California 92037

(Received 11 February 1985)
t I

We predict the manner in which a physical system, of size L x ~, subject to periodic boun-
dary conditions, approaches bulk critical behavior as L ~. While for T & T, (~) the approach is
exponential, for T & T, (~) it is generally governed by power laws whose indices are determined
by the bulk exponents for the corresponding d- and d'-dimensional systems. Specific predictions on
the spherical model of ferromagnetism and the relativistic Bose gas with pair production are verified
by analytical results.
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(d'=0).

(la)
(lb)

The aim of the present Letter is threefold. First, we
shall show that, for systems with continuous sym-
metries where the Mermin-Wagner theorem holds
(and hence the lower critical dimension, d &, is 2), the
approach for T & T, (~ ) depends strongly on the
geometry of the system and more commonly (in fact,
for all d' & 2) turns out to be algebraic in nature; only
for d' = 2 does one encounter an exponential approach.
Second, we shall demonstrate how one can predict,
from the bulk behavior of the system in d dimensions
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Phase transitions in finite-size systems have been
studied extensively over the past fifteen years or so. '
Although the critical region has been the main focus
of interest, the question of the approach of the system
toward bulk behavior at temperatures away from
T= T, (~) has also drawn some attention. Until re-
cently it had been a common belief that, under period-
ic boundary conditions, this approach was exponential
in nature —a result supported by exact calculations on
certain examples of the Ising model, the spherical
model, and the Bose gas —so much so that the
power-law behavior found for the free energy of a
spherical-model film, for T & T, (~), was termed as
"anomalous. "' Lately, however, it has begun to
emerge that, while for T & T, (~) the approach is
indeed exponential, that for T & T, (~) may well be
through power laws instead. For instance, the recent
work of Privman and Fisher on finite-size effects in

I I

Ising-type models of size L x ~ shows that, for
T & T, (~), the low-field susceptibility of these sys-
tems, while exponential for a "cylindrical" geometry
(d'= 1), varies as L for a "block" geometry (d' = 0).
The same authors have further showns that, for
models with O(n) symmetry (n & 1), the approach is
algebraic even in the cylindrical case:

f(s)(TH. L) TL
—dy(xt x2) (2)

where 1'(xt,x2) is a universal function of the reduced
variables xt ( = CtL t "t) and x2 ( = C2L "H/T),
t = [T—T, (~) j/T, (~), v and 4 being the usual d
dimensional bulk indices, while C ~ and C2 are
nonuniversal scale factors characteristic of the given
system. Now, while the bulk system is critical at
T= T, (~), the finite-size system, in the universality
class under consideration, is critical at a shifted tem-
perature T, (L) & 0 if d' & 2 and only at T = 0 if
d'~2. The crossover in the former case has been
studied previously; we shall, therefore, concentrate
on the latter case alone.

To effect a crossover over a finite range of tempera-
tures, from T = T, (~) down to T = 0, we generalize
the Privman-Fisher hypothesis by writing x~ and x2 as

xt = CtL' "t, x2 ——C2L "H/T, (3)

~here C&, C2, and t are so defined that the validity of
the hypothesis is extended as desired; at the same
time, they reduce to the original C~, C2, and t as
T T, (~). Following Fisher, ' we postulate that the
temperature dependence of x~ conforms to the re-

near T = T, (~) and in d' dimensions near T = 0, the
various indices relevant to the question of approach.
Third, we shall verify, with the help of analytical
results, a set of predictions made on the spherical
model of ferromagnetism and the relativistic Bose gas
with pair production.

I r

We consider a system of size I x ~", d being
less than the upper (and greater than the lower) critical
dimension of the system; for d = 3, d'= 0, 1, and 2
represent the geometry of a cube, a cylinder, and a
film, respectively. The system is supposed to be sub-
ject to periodic boundary conditions and hence to obey
the Privman-Fisher hypothesis on the singular part of
the free-energy density, viz. ,
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quirement that

x) = C)L "I = b [L/((T) ]t/v (4)
where g(T) is the bulk correlation length while b is a
universal number. Clearly, if we throw a11 the tem-
perature dependence arising from g( T) into t, then C,
can be made temperature independent. The scaling
forms for the zero-field susceptibility and the (singular
part of the) specific heat of the system are then given
by

)(o(T, O;L) =—g2f (s)

,
()H', H=o

and

g2f (s)

T ()x2 x =o2 2
(

= (C,'L "i"/T)z(x, , 0)

g2f (s)
c(')(T, O;I, ) = —T

, H=o

= —TC, L ~"—
9 T c)x) x2 p

= Ct'(T Bt/dT)'L "Z'(x, , 0), (6)
where Z and Z' are appropriate derivatives of
Y(x t,x2). Specializing to the spherical model, we
compare the known bulk behavior "of g, Xo, and c(')
for T & T, (~ ) with the corresponding results emerg-
ing from Eqs. (4)—(6) for xt +~ and find that, for
2&6'&4,

K, —K T T( )—
K, T

(7)
K g2 —d C (Kgd+2) —1/2

where K = J/T, K, = J/T, (~), J and a being the ex-
change energy and the lattice constant, respectively.

We now propose that for I & 0 and L ~, Xp ap-
proaches its bulk behavior as L t

~
t ~~, where ( and 0 are

as yet undetermined exponents. This obviously re-
quires that

Z(x, , O) —Z ~x, ~' (x, —~), (8)
with Z universal; it readily follows that
(= (y+8)/v. At this point we observe that the

2

2 —d

L=Z J K~a

2(d —d')
2 —d'

It follows that for a "block" geometry (d' = 0), (= d,
and for a "cylindrical" geometry (d'= 1),
(=2(d —1); cf. Eqs. (1). Similar remarks apply to
other thermodynamic quantities; in particular, for the
specific heat we predict that

4 —d' = —(1+e),8 =o.—2=—
2 —d

n+ n —2 2(d —d')

X"=C;Z =Z'K;a-d-t
where the various symbols have obvious meanings.
The approach in question, therefore, takes place gen-
erally through a power law; it is only for d'= 2 that the
approach becomes exponential in nature. We shall
now check our predictions against analytical results for
the spherical model and the relativistic Bose gas.

In a recent study of finite-size effects in the field-
free spherical model under periodic boundary condi-
tions, we have shown' that, for 2 & d & 4, the singu-
lar part of the free-energy density of the system is
indeed in conformity with the scaling hypothesis (2)
and that the scaling function Y(x), 0) is given by the
parametric equations

(12)

asymptotic condition xq —~ corresponds equally
well to the situation where L stays fixed but t
which happens as T 0; see Eq. (7). But then we
should be encountering the bulk critical behavior of
the d'-dimensional system, viz. , Xp~ T s~ ~t ~~, where
j has its obvious meaning. Comparison of the two sit-
uations demands that, for consistency,

~=(y+y)/,
the corresponding amplitude being

X- C2 T 'Z C) =Z I 'K ~a ( d» —("+2) (10)

We thus see that, for T & T, (~), the approach of the
I I

given finite-size system L x ~ toward bulk criti-
cal behavior in d dimensions is determined jointly and
completely by the bulk exponents appropriate to both d
and d' dimensions. Since, for 2 & d & 4,
p = 1/(d —2) and y = 2/(d —2) while, for d' & 2,
y = 2/(2 —d'), our predictions take the form

() y l~ 4 —d
m d

I I

d 2 dd', y —~ —d', y2 '
2

2x)(y) =
8~'~'

—2X d', y
s( 2

wherey is the thermogeometric parameter' ' appropriate to the system,

y = —,
' (L/a )y' ' [@= (Z/J) —2d ],

(14)
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)( being the usual spherical field, d' ( = d —d') is the number of dimensions in which the system is finite, while

W(n~d;y)= g " [q=(q) +. . .+q'. )' '&0],K„(2yq )

(d ) (yq)
(16)

K„(z) being the well-known modified Bessel functions. The scaling functions for Xo and c(') turn out to be

Z'(x, , O) =- 32&
8y'

' '
I (—,

' (4 —d) ) +2~(—,
' (d —4) Id';y)

Z(x, , O) =

(18)

For t & 0 and L ~ (which makes x) +~), the parameter y diverges while the functions P. (n ~d';y) van-
ish exponentially. The finite-size effects in f('), Xo, and c(') are then given by

(s) L (s)
' (d+1)/2

5(f ' )= = —[dd ' '/I (—,'(4 —d))] ef(s) (
) (d —1)/2

S(X,) = —[2d ~' '/r(-, '(4 —d))] ~ e (19)

and

5(c")= —[2d ~' '/I (-,' (4 —d))](2g/L)"-'"'e-'"
respectively. It is remarkable that the exponential fac-
tor governing the approach of all the three quantities
studied here is the same; it also agrees with the factor
obtained by Barber and Fisher for the quantity 5(Xo)
for a system with d'= 1. It seems worthwhile to point
out here that, in his analysis of the quantity
5($) [= [g(L) —g(~ ) ]/g(~)) for the spherical model
with d'=1, Luck' has also obtained precisely the
same exponential factor; see, as well, Luscher, ' who
has carried out a similar study for the scalar case n = 1.

In the critical region, where ~t (
= O(L ' ") and

hence ~xt) = 0 (1), Eqs. (2), (5), and (6) give directly
the well known results9: f ' ~ L, Xo~ L» ", and
~ (s) L a/v

To study the situation for t & 0 and L ~ (which
makes x( —~), we make use of the asymptotic
behavior of the functions M(n ~d';y) as y 0; see
Eqs. (79) and (80) of Ref. 12. If we substitute those
results into (17) and then into Eqs. (5) and (6), we
find that all the predictions made in Eqs. (11) and (12)
are verified. In the process, universal amplitudes Z
and Z ' are also determined and are seen to depend on
d' alone:

(8~ )d'/(2 —d')

[I ( —,
' (2 —d') ) ]' "

(21)
Z' =1/(2 —d')Z

Thus, for d' ( 2, the susceptibility Xo is governed by a
power law, L~, whose exponent depends strongly on
the geometry of the system; for d =3, it goes as L for
a cube (d' = 0) and as L for a cylinder (d' = 1). Only
for d' = 2, such as a film in three dimensions (the only
case for d = 3 where exact calculations were previously
available ), is the approach exponential. Similar re-
marks apply to other thermodynamic quantities, in-

t

e2x (n = 1, Ising),
(n ~2),

(22a)
(22b)

we would expect that, in this case, the approach toward
bulk behavior for T & T, (~) will be exponential only
in the Ising case and algebraic in all other cases. This
expectation is indeed upheld in Refs. 7 and 8.

One of us (R.K.P.) is thankful to the members of
the La Jolla Institute for the hospitality extended to
him during his sabbatical leave in 1984—85. Financial
support from the Natural Sciences and Engineer-

eluding the specific heat.
Since the approach of the given (d, d') system to-

ward bulk behavior is determined solely by the bulk
exponents in d and d' dimensions, it is clear that for all
systems in the same universality class the manner of
approach will be the same. This is indeed vindicated
by our separate calculations on the relativistic Bose gas
with pair production, ' where similar methods have
been used to study the free energy, the specific heat,
and the condensate fraction of the system in three
dimensions; calculations for a d-dimensional system,
including those on the isothermal compressibility of
the system, will be reported in a separate communica-
tion. As expected, the various exponents, such as 0
and (', turn out to be the same as in the case of the
spherical model, while nonuniversal quantities, such as
C&, C2, and t, are quite different.

Although we have presented calculations only for
the exactly solvable models, the methods outlined
here may have scope for wider application. For in-
stance, consider the n-vector models in the cylindrical
geometry, L x ~ ', in three dimensions. Since the
behavior of the zero-field susceptibility for a bulk sys-
tem with d' = 1, as E ~, is known to be'
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