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Measurement of the Formation and Evolution of a Strange Attractor in a Laser
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We have measured the fractal dimensions and the Kolmogorov entropies of periodic and chaotic
attractors for a C02 laser system with modulated losses. In particular, we find an increase in
dimension near the accumulation point of the periodic cascade according to the Feigenbaum scaling
law, besides the expected usual increase of the attractor dimension in the chaotic region. Numeri-
cal solutions of a theoretical model yield dimensions in quantitative agreement with the experi-
ments, thus demonstrating a close match of experiment and theory for this physical system.

PACS numbers: 05.45. +b, 05.70.Ln, 42.50. +q

Over the past years, several authors'2 have treated
the problem of distinguishing deterministic chaos from
random noise. As one of the readily measurable
characteristics of a strange attractor is its fractal dimen-
sion, a measurement of this quantity is an important
test, not only to distinguish whether an observed
broad power spectrum corresponds to deterministic
chaotic behavior or just to noise, but also to character-
ize the strange attractor. Different algorithms have
been proposed and applied to numerical results orig-
inated by return maps or nonlinear differential equa-
tions. More recently similar calculations were per-
formed on experimental data from several systems5
including a laser. However, a complete correlation
between theory and experiment has been lacking thus
far because reliable models are unusually complicated
and detailed time-dependent results had not yet been
generated.

Here we present an accurate experimental test of the
fractal dimensionality of the attractor for a CO2 laser
with modulated losses. For the first time, the fractal
dimension at the accumulation point of a Feigenbaum
cascade is experimentally measured and, also for the
first time, the experimental results can be compared
with results from the theory of such a system.

The experimental setup was described previously, 9

and some subharmonic frequencies and eventually
chaos were shown to exist. For the purpose of this
Letter we remark that the stability of the experimental
system has been greatly improved and a very stable

f/8 subharmonic frequency and even an f/10 periodic
window inside the chaotic region have been ob-
served. '0 To give an idea of the reliability of the ap-
paratus we report here a series of behaviors observed
at 2'/0 modulation depth for slight changes of the
modulation frequency, controlled via a programmable
synthesizer driven by a microprocessor. In the follow-
ing sequence the number is the set frequency (in ki-
lohertz), and then the relevant subharmonics are indi-
cated: 191.290, f/5 and f/4; 191.313, f/3 and f/4;
191.320, f/2 and f; 191.324, f; 191.327, f/2 and f/3;
191.331, f/3; 191.337, f/4. This is just a sample from
a much larger data collection.

As we keep the modulation frequency constant at
191.000 kHz and increase the modulation depth from
1'/0 to 20'/0, the system passes through a period-
doubling cascade up to the accumulation point and
enters a fully chaotic region. The chosen frequency is
close to the nonlinear laser resonance 0, introduced in
Ref. 9. It depends on the damping rates k of the cavity
and y of the molecular population and on the relative
amount ~ of pumping above threshold as
= [ky(A —1)]'/2. As we scanned the frequency we
found a narrow tongue of maximum sensitivity around
0, where the laser destabilizes with the least amount
of modulation.

The signal was digitized by a LeCroy transient
recorder with 32000 samples in memory. Setting the
internal clock at 320 ns, we obtained approximately 16
points for each period of the fundamental frequency
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with eight-bit resolution. By synchronizing the sam-
pling time to the external drive period we obtained a
projection of the Poincare section. The projection is
onto a one-dimensional space (we measure only the
intensity) independent of the other variables. In Fig. 1

we present the sections and the corresponding time
series, respectively. The advantage of this signal pro-
cessing is that we are able to analyze a high number of
periods (32000 maximum) with a single acquisition.
Furthermore, it allows a much larger-bandwidth pro-
cessing of narrow pulse sequences, which otherwise re-
quires a high sampling rate with the related problems
in data storing and processing. In Fig. 1, on the left-
hand side, the bandwidth is 300 kHz, and on the right
it is 100 MHz; indeed we can notice already in the f/8
plot a loss of resolution in the smaller peaks on the
left-hand side.

We analyze digitized time sequences of the laser
output intensity and reconstruct the attractors with an
embedding technique. 3 s Different procedures for the
determination of the fractal dimension have been pro-
posed and here we follow the method described in1-4

Ref. 1.
If we define N„(~)as the number of vectors whose

distance is smaller than e, and if the embedding
dimension n is large enough, then N„(e)—e", where
v is a characteristic dimension of the attractor. In Figs.
2(a) —2(f) we plot logN„(e) as a function of loge for a
sequence of bifurcations f/4, f//8, and chaos. We will
not discuss here the slope of the curves for small or
high values of loge, as it has been done by several au-

5-9 ~ ~

thors, but we limit our analysis to the regions where
it remains constant over a wide region of loge and
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where it is independent of n, as it must be from
theoretical predictions.

From inspection of Figs. 2(a) and 2(b) it is clear
that the slope obtained for the f/4 subharmonic satu-
rates at v =—1 in the time series and v = 0 in the Poin-
care section. For the f/8 subharmonic v is slightly
above 1.5 [Figs. 2(c) and 2(d)]. This result, even
though not readily understandable because the time
signal still appears periodic, nevertheless agrees with
the theoretical prediction for the dimension at the ac-
cumulation point (infinite periodicity) of the logistic
map (1.5376 & v & 1.5385). Indeed this dimension
has been proven to be universal for those mappings
for which the Feigenbaum scaling law holds. " We
present here a heuristic interpretation based on our
data. In our experimental system, the unavoidable
noise yields a trajectory wandering over a nonzero
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FIG. 1. Top: Laser intensity vs time for an f/8 subhar-

monic frequency, and corresponding stroboscopic intensity
plot with the time interval between successive points equal
to the period of the modulation frequency (191.000 kHz).
Bottom: Laser intensity vs time and stroboscopic plot for
chaotic behavior. The period of the modulation is 5.2 p, s.
~e note on the left-hand side the loss of resolution due to
the limited acquisition bandwidth. This drawback is absent
on the right-hand side because of the huge increase in

bandwidth.

FIG. 2. Plots of logN„(e) vs loge for different values of n

calculated from the time series (left-hand panels) and from
the stroboscopic sections (right-hand panels) for different
subharmonic frequencies (a), (b) f//4; (c), (d) f'/8; and
(e), (f) chaotic behavior. All best-fit values of the slope v

are assumed to have an overall estimated error of +0.1.
6000 points were used. The embedding dimensions for all

reported plots run from 5 to 9. Dimensions from 1 to 15
were tested.
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FIG. 4. Correlation entropy Kq (in kilohertz) vs the
embedding dimension for the f/4 (crosses) and the chaotic
(triangles) attractor.

FIG. 3. Plots of log jV(e) vs loge for different dimensions
n obtained from the numerical integration of the model
equations for two different cases, f/8 subharmonic (lef't-

hand side) and chaos (right-hand side). 6000 points were
used.

range of parameter values, thus "testing" nearby
periodic attractors of the subharmonic sequence. ' For
infinite resolution, we would see for the stroboscopic
data a staircase of horizontal plateaus each with zero
slope, as it appears at higher embedding dimensions in
Figs. 2(b) and 2(d). However, the finite resolution of
the correlation measurements averages over adjacent
steps, and thus provides the 0.58 slope, as it appears in
Fig. 2(d). This is the first time that the dimension at
the accumulation point of a Feigenbaum cascade has
been measured in an experimental system.

When the system enters the chaotic region, the frac-
tal dimension suddenly jumps to a higher value
(v = 2.4) according to the general theory of strange at-
tractors.

The CO2 laser system used here can be modeled by
two first-order nonautonomous differential equations
as described in Ref. 9. The time behavior of the inten-
sity obtained by numerical integration of those rate
equations was processed in the same manner as the ex-
perimental signal. Figure 3 shows the results obtained
for an f/8 solution and a strange attractor. Again near
the accumulation point v =—1.5. Direct comparison of
Fig. 3 with Figs. 2(c) and 2(d) shows a good agree-
ment between experiment and model.

It is important to stress that this agreement between
theory and experiment is obtained with no floating
parameters, but just our feeding the equations of Ref.
9 with the experimental values of the parameters,
namely the following: the unmodulated cavity damp-
ing rate, K& =3&&107 sec ', the relaxation rate of in-
duced dipoles, y& =10 sec ', the collisional relaxa-
tion rate of population inversion (at the working pres-
sure and discharge current), y~~ =2.5&103 sec ', the
Einstein coupling coefficient of rate equations (for the
definition, see Ref. 9), G = 0.25 & 10 4 sec ', and the
frequency and amplitude of loss modulation as in the
experiment, that is, the frequency set at 191.000 kHz

and m = 2.0'/o and 2.85%, respectively, for the left- and
right-hand sides of Fig. 3.

The high regularity of the stroboscopic W(e) plots
for increasing of embedding dimension [Figs. 2(b),
2(d), and 2(f)] suggests the application of a method'
which gives a lower estimate of the Kolmogorov entro-
py. In Fig. 4 we report the correlation entropy E2 as
defined in Ref. 1 versus the embedding dimension for
the f/4 and for the chaotic attractor. We see that
while K2=0 for f/4, K2=—35 kHz for the chaotic at-
tractor. As we have a single positive Lyapunov ex-
ponent and as the embedding time is 5.2 p, s, we esti-
mate that the half-loss of information corresponds to
3.8 periods of the modulation frequency.

In conclusion, our experiment has a new feature
with respect to previous ones, s 9 insofar as, for the
first time, there is a strict quantitative correspondence
between the experimental chaos measured in the lab-
oratory and the theoretical chaos provided by the
model, which thus confirms that the Maxwell-Bloch
equations with adiabatic elimination of the polarization
are valid for the modeling of our experimental system
even in the chaotic region.
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