
VOLUME 55, NUMBER 3 PHYSICAL REVIEW LETTERS 15 JULY 1985

First-Order Transition to a Metallic State in Polyacetylene:
A Strong-Coupling Polaronic Metal
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We present a theory of the first-order transition to the metallic state in polyacetylene in terms of
a crossover from a lattice of charged solitons to a regular array of polaronlike distortions. The po-
laronic metal is shown to have a strong indirect attractive interaction, U'= —2b, /3, between elec-
trons in the half-filled, narrow, polaron subband within the Peierls energy gap (Eg = 2A).

PACS numbers: 71.30.+h, 71.38.+i, 72.80.Le, 74.20.—z

The discovery' that the onset of metallic behavior in
trans-(CH)„ takes place as a first-order phase transi-
tion suggests that the metallic state at high dopant con-
centrations is both novel and of fundamental interest.
This first-order transition is inconsistent with a
description in terms of a "dirty" metal which would
arise from a disorder-induced gradual evolution of fin-
ite density of states in the Peierls gap. Moreover,
there is considerable evidence that structural distor-
tions persist into the metallic regime; specifically, the
doping-induced infrared modes remain3 even at the
highest dopant concentrations. Since these modes are
the signature of structural distortions which form
around injected charges, the infrared data imply that
the metallic state is not a uniform —bond-length poly-
ene. Rather, it is a dimerized structure with a high
density of localized structural distortions.

In this Letter we present a theory of the first-order
phase transition in terms of a crossover from a lattice
of charged solitons to a novel metallic state consisting
of a regular array of polaronlike distortions, with elec-
trons delocalized in the partially filled polaron sub-
bands within the Peierls gap. We find a critical con-
centration and a jump in the density of states at the
transition in agreement with the experimentally mea-
sured values. Moreover, since the existence and shape
of the polaron structural distortion are sensitive to the
local occupancy, the polar onic metal has a strong
electron-phonon coupling and a correspondingly strong
indirect attractive interaction between electrons.

Important parameters for trans (CH)„are the -inter-

site transfer integral to (the 7r-electron bandwidth is
4to) and the Peierls energy gap, Eg =25. In trans
(CH)„ to

——2.5—3.0 eV and 5 = 0.8 eV. The ground
state and nonlinear excitations of trans-(CH)„have
been successfully described in terms of the Su,
Schrieffer, and Heeger (SSH) model [or its continu-
um Takayami, Lin Liu, and Maki (TLM) version].
%e will use interchangeably expressions derived from
the SSH and TLM models. Since the interesting phys-
ics occurs over lengths of order the electronic coher-
ence length go= a(2to/b, ) = 6a —7a, where a is the
projection of the carbon-carbon distance along the
chain axis, the differences between the two are not sig-
ni ficant.

The ground state of trans (CH)-„ is a Peierls distort-
ed state of commensurability 2 (dimerized), and hence
is twofold degenerate. The relative charged excitations
involve large-scale distortions of the lattice. They are
the spinless topological kinks, solitons, and the topo-
logically trivial polarons, with creation energies
E, = (2/7r)A and E~= J2(2/7r)A, respectively. Since
E~ )E„ the SSH model predicts that upon doping or
photoexcitation charge will be stored in soliton-
antisoliton pairs. This has been verified through a
variety of experimental studies' which demonstrate
charge storage in nonmagnetic midgap states. Howev-
er, the energy difference between the two configura-
tions is relatively small, E~ —E, = (J2 —1) (2/7r )b,
= 0.2 eV. Thus, at finite dopant concentrations (y),
this energy difference is reduced through delocaliza-
tion of electrons in the gap states into subbands. This
causes a crossover of the energies, at a critical dopant
concentration y, from a nonmetallic soliton lattice
(y & y, ) to a metallic polaron lattice (y )y, ) .

The essential physics of this transition is contained
in the band diagram sketched in Fig. 1. Figure 1(a) is
appropriate to a lattice of charged (n type) soli-tons;
the midgap band is symmetric about the gap center
and all states in this subband are filled. As a result,
the energy per soliton remains unchanged, E, (y)
= (2/7r)A plus corrections (discussed below) of order
6 exp( —2R/(o) where R = a/y is the mean separa-
tion between solitons. For an array of polarons
[sketched in Fig. 1(b)], the upper subband in the gap
is half-filled. Consequently, the energy per polaron
decreases as the density of polarons increases; E~
= J2(2/m)A —(1/7r) W~(y), plus corrections of order
4exp( —2R/&2(o), where W~ is the polaron band-
width. These simple observations suggest a transition
to a polaronic metal at a concentration sufficiently
large that

II (y, ) =7r(E~ —E, ) =25(W2 —1).
An expression for the polaron bandwidth at small y
[exact to leading order in the overlap factor,
exp( —R/J2go)] is obtained by calculating the off-
diagonal matrix elements of the TLM Hamiltonian
between unperturbed states on each polaron and com-
puting the band structure in the tight-binding approxi-
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FIG. l. (a) Band diagram for a soliton lattice; the midgap
band is full (n-type doping). (b) Band diagram for a polaron
lattice; the upper polaron band is half-I'ull (n ty pe dop-ing).

mation. The result is

W~(y) = 4425 exp( —R/&2$p) (2)

plus terms of order exp( —J2R/(p).
Using Eqs. (1) and (2) we obtain y, =0.053 (a mean

separation between polarons of R, = 19a) and H~(y, )
=0.66 eV. This value for y, is in excellent agreement
with the measured value. ' At the transition, the den-
sity of states at the Fermi energy in the half-filled po-
laron band is given by

(3)

where pp= [~tpa] ' is the density of states of the
uniform —bond-length polyene and

g =
IJ2(J2 —1)in[2j2/(242 —1)]I '=0.89.

Therefore, at the transition, the density of states is ap-
proximately 2 states/eV-polaron or 0.11 state/eV-C, in
excellent agreement with that obtained from the mag-
nitude of the Pauli susceptibility. '

Although the electron-electron interactions, elec-
tron —dopant-ion interactions, and intersoliton (or in-
terpolaron) repulsive energies must also be included,
we argue that the net effect of these contributions to
the energy difference between the soliton and polaron
lattices is small. The energy of the soliton lattice has
been analyzed; within the single-chain approximation

exact solutions are available which demonstrate that
the intersoliton repulsive energies are of order
6 exp( —2R/gp). Similarly for a lattice of polarons,
the repulsive energy is of order 4 exp( —&2R/(p).
There is also an overall shift in the average energy of
the electronic subband in the gap and a slight change
in the polaron shape, both of which produce effects of
this same order. ' Thus, because of the larger spatial
extent of the polaron, the intersite repulsive terms
slightly favor the soliton lattice. This has been con-
firmed by numerical calculations on the SSH model
which show that these repulsive energies begin to be
important at concentrations defined by Eq. (1) and
that they favor the soliton lattice at this concentration
by an amount = 0.075. Thus the first-order transition
does not occur within the strict SSH model. However,
since the energy difference between the soliton and
polaron lattices is so small for y near y„even weak in-
teractions which are not included in SSH will drive the
transition. In particular, Coulomb interactions tend to
favor the polaron lattice: Electron-electron repulsion
favors the more delocalized charge distribution in the
polaron (width = J2(p) over the soliton (width
= gp). By roughly the same factor, the binding ener-
gy of the soliton to a dopant ion is larger than that of
the polaron. The polaron lattice is further stabilized by
correlation effects within the polaron band. " The ob-
servation that the net repulsive energy and the net
Coulomb energy are both small and tend to cancel (in
the energy balance) rationalizes the excellent agree-
ment of the simple expressions [Eqs. (1), (2), and
(3)] with the experimental results.

We conclude that the metallic state is a polaronic
metal with a half-filled polaron subband within the
Peierls gap. Since the energy of the electronic bound
states in the gap is sensitive to the shape of the po-
laron structural distortion, the polaronic metal has a
particularly large electron-phonon coupling. In addi-
tion, since the polaron band is relatively narrow,
electron-electron interactions (both direct and in-
direct) can produce large correlation effects within the
polaron subband. To describe the physics of this novel
metallic state we consider an effective Hamiltonian for
the half-filled electronic subband and the coupling of
these electrons to the shape of the 1ocal lattice distor-
tion

0 = —t~(y) g [CR,Ctt, +H.c.] —ti(y) X [C„,CR+t, +H.c.]+ U~ g(CRI CRl ——,
' )(CRICRJ )

R,s R,s, li R

+ Xe(x„)(C„,C„,——,')+ XE~+ QC (x„)+—,
' gM (x„)x„',

R,s R R

where CR, creates an electron of spin s on the polaron at impurity site R, t~(y) = —, II~(y) is the hopping matrix
element for electrons between nearest-neighbor polaron sites on the same (CH) chain, and ti(y) is the transverse
hopping matrix element between polaron sites on neighbor chains. The magnitude of ti can be estimated by in-
cluding the coupling, t3, between 7r orbitals on adjacent (CH)„chains which gives rise to a finite transverse m
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(5)

bandwidth; t3 has been estimated previously' to be
about 0.1 eV. So long as the separation between po-
larons on adjacent chains,

~ li ~, is less than about J2(o,
t&

——t3 S.ince there are four nearest-neighbor chains,
we expect ~li ~

= R,/4 & J2(o. Therefore, t~(y, ) and
t~(y, ) and ti are comparable and the polaron subband
is three dimensional. U~ is the repulsive energy
between two electrons on the same polaron, ~ith the
lattice configuration frozen To. estimate U~, we include
an on-site Hubbard interaction U in the SSH model.
In this case' '

U, = (2JZa/3g, ) U= U, /W2,

e(x) = 6 (sech[K(x)x] —I/W2)

= — i(~/c. )( --) (6a)

and

where U, is twice the difference in energy between a
charged and a neutral soliton. The remaining terms in
the Hamiltonian describe the interaction between the
metallic electrons and an optical phonon which con-
sists of a single localized lattice mode per polaron, the
polaron width mode, which is parametrized by the col-
lective coordinate xR. With this approximation6b

(6b)

n U') U~, and
nsional, there is

the possibility of superconductivity. In all three cases,
the effects of disorder can be quite severe, since the
polaron band is relatively narrow.

For polyacetylene, the good agreement of the Pauli
susceptibility with the value obtained from the theory
without interactions suggests that U, rr is small. The
absence of superconductivity implies that either
U, ff ) 0 or that the disorder is too large in the samples
studied to date.

The results presented in this Letter are readily gen-
eralized to the case in which the ground-state degen-
eracy of the polymer is weakly lifted. Since the energy
difference between confined soliton pairs (bipolarons)
and polarons is less than (but comparable to) that
between solitons and polarons, the crossover between
the two occurs at a dopant concentration comparable to
y, for trans (CH)„. We-therefore anticipate that at
high dopant concentrations polyheterocycles such as
polythiophene, polypyrrole, etc. , may be polar onic
metals. This is particularly interesting, for these sys-
tems offer the possibility of controlling the magnitude
of U~ to some degree by changing the structure of the
monomer. A specific example is the addition of a po-
larizable aromatic ring to the thiophene monomer to
make isothianaphthene. '6 The smaller energy gap of
polyisothianaphthene (about one-half that of the
parent polythiophene) may be at least partially due to a
reduction of the effective Coulomb interaction. '

In conclusion, the abrupt onset of the Pauli suscepti-
bility in doped trans (CH)„ is sho-wn to be consistent
with a first-order transition from a soliton lattice to a
polaronic metal ~ The critical concentration and the
magnitude of the density of states in the polaron sub-
band are found to be in agreement with the experi-
mental values. The strong, indirect, attractive interac-
tion between electrons in the narrow polaron subband
suggests the possibility of superconductivity in con-
ducting polymers provided the direct Coulomb interac-

e& = —,
' [Z2 —ln( 42+1)]= 0.94,

42= (J2/7r) [J2—ln( 42+1)] 2=1.59.

The effective mass of the lattice mode is M'(x).
There exists an indirect attractive interaction

between electrons in the polaron subband, mediated
by the exchange of virtual phonons. In the linearized
approximation

U = —[e'(x)]2/4 "(x)= —(J27r/8)A

and hence is greater than the polaron bandwidth. The
combined effect of the Coulomb and electron-phonon
terms is a net effective interaction between electrons

U,«= Up
—U',

which could, in principle, be positive or negative. Us-
ing the experimental value' for U, = 0.9 eV, Eqs. (5)
and (8) yield U, rr

——0.2 eV.
Although the underlying electronic structure of

trans (CH)„ is qu-asi one dimensional, the excitation
spectrum within the polaron subband described by Eq.
(4) is that of a three-dimensional narrow-band metal.
Charge fluctuations occur at a rate = 8~/h; so long as
this is fast compared to the optical photon frequency
the equilibrium lattice configuration is sensitive only
to the expectation value of the charge. We distinguish
three possible regimes of parameter space. When
0 ( U ff ( 2 ~p the polaron lattice is stable and has
the 4k„periodicity characteristic of a Peierls system
with repulsive interactions. ' When U) H~ and the
polaron band is sufficiently one dimensional, we ex-
pect a Peierls distortion of the polaron lattice to pro-
duce a 2kF component to the overall periodicity and a
gap at the subband Fermi energy. In the strong-
coupling limit, this state would look like a bipolaron

t

4~„&= (4A/vr) (cos '[K(x)go] —7r/4}sech[K(x)x]+tanhK(x) —I/W2 = —,
' (b,/(o)(x —x),

i

where x = J2(oln(W2+1) is the equilibrium polaron
width, K (x) is defined implicitly by K (x) go bound to every other dopant ion. Whe
= tanh[K (x )x], the polaron band is quite three dime
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tion can be reduced through the use of appropriate
monomers and provided the materials can be im-
proved to minimize disorder.
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