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Noise Scaling in Continuum Percolating Films
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Measurements of the scaling of 1/f' noise magnitude versus resistance were made in metal films
as the metal was removed by sandblasting. This procedure gives an approximate experimental real-
ization of a Swiss-cheese continuum-percolation model, for which theory indicates some scaling
properties very different from lattice percolation. The ratio of the resistance and noise exponents
was in strong disagreement with lattice-percolation predictions and agreed approximately with sim-
ple continuum predictions.

PACS numbers: 72.70.+m, 05.40.+j, 05.70.Jk, 71.30.+h

The critical scaling of various transport properties on
percolating clusters provides a probe of the structure
of those clusters. Recently, attention has been drawn
to the possibility that the scaling of the mean square
fluctuations Sz in electrical resistance may provide in-
formation not obtainable from the scaling of R, the
resistance itself. ' In particular, since Sz is sensitive
to a higher moment of the current density distribution
than is R it may be among those transport properties3 5

for which the universality of scaling found in lattice
models and many continuum models breaks down, ac-
cording to theory. In this Letter we report measure-
ments of the scaling of S~ vs R in a simple experimen-
tal system which show unambiguously that the lattice
models are inapplicable to continuum systems and
which approximately confirm theoretical expectations
for a simple continuum model.

Monte Carlo simulations' of percolating clusters
on a lattice (consisting of identical resistors with in-
dependent fluctuations) yield resistance and noise crit-
ical exponents K= 1.12 and PL

———0.973, where the
pg vp

exponents are defined by R —( —b, and
S~/R2 —b, ", with g the percolation coherence length
and p =p, + 4 the filling fraction. Halperin et al. have
recently suggested that the permeability and elasticity
exponents for the Swiss-cheese model, in which round
holes with a fixed radius and randomly placed centers
are removed from a material, are larger than those for
the standard lattice model, while the resistance ex-
ponent vPL should not differ significantly. These
Swiss-cheese calculations were made with a nodes-
links-blobs (NLB) model. 7 The agreement of the
resistance exponent with the lattice value is also con-
sistent with previous works, which predict devia-
tions only for singular distributions of single-link con-
ductivities.

Whether a quantity scales the same in a continuum
model as in lattice models depends on how sensitive it
is to the behavior of the weakest or narrowest links in
the network. In other words, it depends on what mo-
ment of the current density, strain, etc. , is probed by
that quantity. Although the NLB model is not espe-
cially accurate for pL, which probes the second mo-

ment of the current density and thus depends on blobs
as well as links, it is expected to become increasingly
accurate for higher moments, since the scaling of the
number of links is known exactly. Recent experi-
ments have shown that the conclusion that PL is un-
changed in Swiss-cheese-like continuum percolation is
correct. s Noise from local, independent sources (such
as 1/f noise in metal films) probes the fourth moment
of the current density, as opposed to R, which probes
the second. The Swiss-cheese model would predict
that K would be greater than 1.12, by an amount that
we shall calculate later.

We made resistance-versus-noise measurements on
sandblasted metal films. A dry sandblasting process
was used to remove, at random, approximately 2-p, m-
diam regions from a uniform metal film, leaving
behind a two-dimensional Swiss-cheese structure (see
Fig. 1). This technique is well suited for the fabrica-

5Q pm
FIG. 1. Contrast-enhanced transmission-illuminated pho-

tomicrograph of typical sandblasted film. Dark areas corre-
spond to the presence of metal. Because of the finite resolu-
tion of the microscope the exact amount of dark vs light
depends on how the picture is developed, and thus it is not
suited for determining p —p„although it gives a good idea
of the shape of the conducting region.

296 1985 The American Physical Society



VOLUME 55, NUMBER 3 PHYSICAL REVIEW LETTERS 15 JULY 1985

tion of percolating networks, since a complete spec-
trum of p values can be realized sequentially on a sin-
gle sample without altering the film's local resistivity
or any chemical properties likely to affect the noise.
Furthermore, the sandblasted films have no obvious
reasons to have nonrandom constraints on their local
hole distributions, unlike clumped evaporated films in
which one expects local surface-tension effects to
determine the neck distribution. However, the sand-
blasted films have two drawbacks, in that it is hard to
get a good enough measure of the coverage to measure
APL directly and there is some possibility that nonuni-
formities in the blasting process could cause some
unevenness in the coverage.

Indium films (1000—2000 A), aluminum films
(500—1000 A, evaporated in 10 Torr air), and
chromium films (500—1000 A), all deposited on glass
substrates, were found to have suitable sandblasting
properties. We used 10-p,m-diam aluminum oxide
grit, with larger diameter (more massive) grit resulting
in considerably larger holes. Square sample regions
1-3 mm per side were physically masked and blasted
by sweeping the blasting nozzle over the mask win-
dow. Small sample regions and special precautions in
the masking and blasting techniques were necessary to
minimize nonuniformities in p. Two samples were
prepared by blasting a long narrow channel 10 mm& 2
mm with a broad circular spot, leaving a 1 —p profile
which was relatively uniform across the channel width,
but roughly Gaussian along its length, the direction of
current.

Since the details of the noise scaling (in continuum
models) can depend on such factors as whether the
edges have sharp corners, whether the noise comes
from the entire area of the conducting film or mainly
from its edges, and whether the sandblasting scoops
out divots of metal down to the glass or thins metallic
spots, we used films that have a range of properties to
check the universality of the results. The partially oxi-
dized Al and the In were known to be very noisy ma-
terials for which noise throughout the area was expect-
ed to be dominant. The Cr is a relatively quiet materi-
al for which edge effects could be more likely. As
judged from scanning electron microscopy results,
both Cr and Al samples exhibited all-or-nothing spots,
with no significant film thinning, while the In seemed
to be smeared about the sandblasting.

A given curve of Sz vs R gives data taken on a sin-
gle sample, with each data point measured between
successive blasting steps. A representative selection of
plots is given in Fig. 2. The full noise-power spectrum
had a typical 1/f form, with S~ measured over the
1—35-Hz bandwidth. The rms noise in the Al samples
was tested for linearity and found to be linear in
current up to values eight times those used in the ex-
ponent measurements (4 mA). Samples were fabricat-
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FIG. 2. The scaling of S~ /R vs R for several samples.

ed with separate current and voltage leads, with prob-
lems due to contact noise usually being negligible. A
lower limit of measurable values of S~ (upper limit for
b ) was set by the background Johnson noise, and was
still in the scaling regime. The upper limit of the scal-
ing regime, set by intrinsic finite-size effects, was usu-
ally accessible, though large statistical fluctuations
dominated the data here as expected. Beyond this
upper limit, where a rolloff in the noise is predicted,
samples usually went insulating or were unstable. No
reliable data exist for this regime close to threshold,
though a rolloff in the noise was observed in three
samples.

Table I lists the exponents 0 = d(lnS&)/d(lnR )
determined for nine different samples, fabricated from
three different metals on two types of glass substrates.
For all samples the accessible part of the scaling re-
gime spanned no more than 1.S octaves in R values.
We should emphasize that all these data were taken
close to threshold, with only a small fraction of the to-
tal sandblasting giving the resistance range shown.
The resistances were not in a convenient range for
noise measurements until the transition was ap-
proached. Exponents were determined by a least-
squares fit of a straight line to the logarithm of the
data, excluding the clearly nongeneral finite-size
behavior very close to threshold discussed below. A
majority of the samples had exponents in the range
5.4—6.2, with values occasionally higher but never
lower than this range.

The noise in two samples showed a tendency to scale
more strongly in R for high R, very close to threshold,
than for low R (see In2 and In3 of Fig. 2). This scatter
in the exponent ratio, which becomes severe only very

297



VOLUME 55, NUMBER 3 PHYSICAL REVIEW LETTERS 15 JULY 1985

TABLE I. Scaling exponents for the noise as a function of
resistance in percolating sandblasted metal films.

Sample
Exponent( + ):

d(lnS, )/d(inc )
Correlation coefficient

for straight-line fit

A]5

A17

A112b

A118'

In2

In3

Cr2'

Cr3

6.2 (0.1)

6.2 (0.4)

6.2

7.5(0.3)

5.85 (0.07)

8.1 (0.7)
6.0(0.3)'

7.3 (1.1)

6.9 (0.5)

5.4(0.5)

0.998

0.988

0.999

0.999

0.976
0.994

0.902

0.987

0.933

'Two data points.
Metal film evaporated on preblasted glass substrate.

'Prepared with approximately Gaussian variation for 1 —p.
Computed for first four data points (see Fig. 2).

close to threshold, is presumably due to both the inev-
itable large fluctuations near threshold plus some sys-
tematic effects due to nonuniformities in p, to be dis-
cussed.

Although their two-dimensional Swiss-cheese model
seems roughly appropriate for describing our samples,
Halperin et al. do not calculate noise-scaling ex-
ponents. The procedure for doing so is somewhat dif-
ferent from that for calculating other exponents in that
one must first consider how the current distributes it-
self to minimize the resistance, then use that distribu-
tion to obtain the noise scaling. Without going into
great detail we may outline an approach that makes
sense a priori and gives predictions similar to our
results.

Following Halperin et al. we calculate the noise ex-
ponent in an NLB model. We allow for uniformly
distributed neck widths, h, with corresponding neck
lengths proportional to h', giving resistances propor-
tional to h '~ . The noise power from such a neck
would scale as h ~ . The resistance then has almost
no dependence on the small-5 necks while the noise
depends strongly on them. (If the geometry is less
regular than for an ideal Swiss-cheese model these
scaling laws can be modified slightly. )

Above threshold, the current through the smallest
necks falls off inversely with their resistance, h' 2, and
these do not give a divergent contribution to the noise.
The key to determining the noise scaling is to find the
scaling of h, the size of the smallest necks through
which almost as much current flows as would flow if

the necks were of equal size, with A. The current, of
course, is distributed so as to minimize the po~er dis-
sipation. We may approximate the adjustment of the
current from that for a simple lattice model by treating
this adjustment as negligible above h and as com-
pletely eliminating the current below h . This approx-
imation allows for an exact calculation of the depen-
dence of the resistance on h, within the NLB model,
giving the h which minimizes R as scaling as 5 . A
different approximation, within the same model,
would be to consider that the resistance of a particular
link does not affect the current through that link until
it becomes comparable to the node-to-node resistance
with which it is in series. Considering onIy resistance
from links in an NLB model, this would again give h~
proportional to 4, while using a corrected resistance

2VpLscaling gives h proportional to 5 or A2.6 . The
difference between these two estimates gives a good
idea of the uncertainty due to the approximation of the
NLB model, and so we take h proportional to

2.3 + 0.3

In calculating some exponents, Halperin et al. use a
h proportional to 6, determined by asking what the
typical minimum h is on a fixed backbone. We do not
believe that such a procedure is appropriate for calcu-
lating the h~ for the noise problem. '

The Swiss-cheese model, handled with the NLB pic-
ture, then predicts Sz scaling as the number of links
(6 ') multiplied by the coherence area (5 "),
which determines the number of independent chains
averaged together, and by h, which results from
integrating the noise over neck widths. Then

Q = [ I + 2 v + 1.5 x (2.3 + 0.3 ) ]/ ( —&pL )
Q =5.47+0.35. A Swiss-cheese model with 8

proportional to b, would give Q = ( I + 2I + 1.5)/
( —upi. ) = 3.97. Simulations of the lattice model'6
give Q =2.86, while an NLB lattice model for the
noise would give Q = (1+2p)/( —pp~ ) = 2.82.

These estimates must be corrected, ho~ever, to al-
low for possible effects of nonrandom nonuniformities
in p caused by slight irregularities in the sandblasting.
When variations hp in p are small over distances of or-
der g, well-defined values for the resistivity and noise
in terms of the local coarse-grained p (x,y) are
presumed to exist. For Bp/b. (( 1, the sample is
essentially homogeneous, and R —6'l and
Sz —4 "P "are valid expressions. For hp larger than
4, most of the current can be confined to high-density
channels, awhile most of the resistance and noise can
occur in the lowest-density passes in those channels.

For variations with 5p/4 )& 1, we define
5p (x,y) = c,x"—c2y, where x is the direction of
current and y is the orthogonal axis. For linear varia-
tions n = 1, for quadratic variations n = 2, etc. The in-
tegrals for R and Sz can be put in dimensionless form,
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assuming that c~ and c2 are each either zero or large
enough so that the noise and resistance are dominated
by regions whose boundaries are determined by the in-

vp, + (i/n) —(i/m)
homogeneities. This yields A —5 and

2vpL ~ + (1/n) —(3/m)S where the n and m terms are
included only if the corresponding coefficient is
nonzero. Thus, for the expected value vPL = —1.3,
series-type nonuniformities (c2 ——0) with small n and
hp/6 » 1 can lead to dramatic increases in the mea-
sured exponent ratio Q. If hp/6 —1 anywhere in the
scaling regime, the exponent will change with the ratio
hp/6, and increase as threshold is approached. In-
clusion of parallel-type nonuniformities (c2e0)
results in smaller deviations which lower the exponent
ratio toward the homogeneous value.

The values of Q in Table I, then, are likely to be
higher than those for the corresponding uniform sys-
tems. The most plausible nonuniformities for our
samples would be smooth random patchiness, with
n = m = 2, giving an increase in Q of —I/vpL or about
0.77. In this case the nonuniformities have no effect
on the resistance scaling, but do cause the effective ac-
tive area to shrink as 4 goes to zero, increasing the
normalized noise intensity. If we consider the homo-
geneous case to give the probable minimum Q, the
patchy case to give a good likely estimate, and the
smooth (n =2) series variations to give a probable
maximum estimate, the values of the three theoretical
predictions become 6.2+09 for our version of the
Swiss-cheese model, 4.7 + o 8 for the Swiss-cheese
model with 5 taken from Halperin et al. , and 3.6 +08
for the lattice model.

All our data are clearly inconsistent with anything
like the lattice model even if we make unreasonably
large allowances for inhomogeneities. Thus we have
confirmed that the continuum percolation problem is
fundamentally different from the lattice problem for
experimentally accessible exponents. All of our sam-
ples gave results consistent with our version of the
Swiss-cheese model. Only two of the nine samples
gave results consistent with 5 proportional to

Thus we also have evidence that the appropriate
narrow-neck cutoff 5 in the Swiss-cheese resistor
scales as predicted from the power-minimization prin-
ciple in an NLB model, i.e., approximately as 6, not
as 4. However, definitive resolution of such relatively
subtle questions would require more precise theory,
probably using continuum simulations, as well as more
detailed characterization of the distribution of the sizes
and shapes of our conducting patches. "
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